高数公式

高数公式,第1张

高等数学涵盖了很多数学分支,因此公式也有很多,以下是一些常见的高等数学公式:

微积分部分:

1 导数公式:$f'(x)=\lim_{\Delta x\to 0}\frac{f(x+\Delta x)-f(x)}{\Delta x}$;

2 常见导数公式:$(x^m)'=mx^{m-1}$,$(\sin x)'=\cos x$,$(\cos x)'=-\sin x$,$(e^x)'=e^x$,$(\ln x)'=\frac{1}{x}$;

3 基本积分公式:$\int x^m \mathrm{d}x=\frac{x^{m+1}}{m+1}+C$,$\int \frac{1}{x} \mathrm{d}x=\ln|x|+C$,$\int e^x \mathrm{d}x=e^x+C$,$\int \sin x \mathrm{d}x=-\cos x+C$,$\int \cos x \mathrm{d}x=\sin x+C$。

线性代数部分:

1 向量点积公式:$\vec{a} \cdot \vec{b}=a_1 b_1+a_2 b_2+a_3 b_3$;

2 矩阵乘法公式:若$A_{m \times n}$和$B_{n \times p}$,则$C_{m \times p}=A_{m \times n} \cdot B_{n \times p}$,其中$C_{i,j}=\sum_{k=1}^n A_{i,k}B_{k,j}$;

3 行列式公式:若$A$为$n$阶方阵,则$|A|=\sum_{i=1}^n (-1)^{i+j} a_{ij} M_{ij}$,其中$M_{ij}$为元素$a_{ij}$的代数余子式。

微分学中的符号“dx”、“dy”等,系由莱布尼茨首先使用其中的d源自拉丁语中“差”(Differentia)的第一个字母积分符号“∫”亦由莱布尼茨所创,它是拉丁语“总和”(Summe)的第一个字母s的伸长(和∑有相同的意义)lim就是limit的缩写,是极限的意思,lim下面符号的意思是“当x趋近于零时”f'(x)则表示f(x)的导数,也就是变化率,从几何意义上讲,就是f(x)的函数图像在x处切线的斜率

微积分公式Dx sin x=cos xcos x = -sin xtan x = sec2 xcot x = -csc2 xsec x = sec x tan xcsc x = -csc x cot xsin x dx = -cos x + Ccos x dx = sin x + Ctan x dx = ln |sec x | + Ccot x dx = ln |sin x | + Csec x dx = ln |sec x + tan x | + Ccsc x dx = ln |csc x - cot x | + Csin-1(-x) = -sin-1 xcos-1(-x) = - cos-1 xtan-1(-x) = -tan-1 xcot-1(-x) = - cot-1 xsec-1(-x) = - sec-1 xcsc-1(-x) = - csc-1 xDx sin-1 ()= cos-1 ()=tan-1 ()=cot-1 ()=sec-1 ()=csc-1 (x/a)=sin-1 x dx = x sin-1 x++Ccos-1 x dx = x cos-1 x-+Ctan-1 x dx = x tan-1 x- ln (1+x2)+Ccot-1 x dx = x cot-1 x+ ln (1+x2)+Csec-1 x dx = x sec-1 x- ln |x+|+Ccsc-1 x dx = x csc-1 x+ ln |x+|+Csinh-1 ()= ln (x+) xRcosh-1 ()=ln (x+) x≥1tanh-1 ()=ln () |x| 1sech-1()=ln(+)0≤x≤1csch-1 ()=ln(+) |x| >0Dx sinh x = cosh xcosh x = sinh xtanh x = sech2 xcoth x = -csch2 xsech x = -sech x tanh xcsch x = -csch x coth xsinh x dx = cosh x + Ccosh x dx = sinh x + Ctanh x dx = ln | cosh x |+ Ccoth x dx = ln | sinh x | + Csech x dx = -2tan-1 (e-x) + Ccsch x dx = 2 ln || + Cduv = udv + vduduv = uv = udv + vdu→ udv = uv - vducos2θ-sin2θ=cos2θcos2θ+ sin2θ=1cosh2θ-sinh2θ=1cosh2θ+sinh2θ=cosh2θDx sinh-1()= cosh-1()= tanh-1()= coth-1()=sech-1()= csch-1(x/a)=sinh-1 x dx = x sinh-1 x-+ Ccosh-1 x dx = x cosh-1 x-+ Ctanh-1 x dx = x tanh-1 x+ ln | 1-x2|+ Ccoth-1 x dx = x coth-1 x- ln | 1-x2|+ Csech-1 x dx = x sech-1 x- sin-1 x + Ccsch-1 x dx = x csch-1 x+ sinh-1 x + Csin 3θ=3sinθ-4sin3θcos3θ=4cos3θ-3cosθ→sin3θ= (3sinθ-sin3θ)→cos3θ= (3cosθ+cos3θ)sin x = cos x = sinh x = cosh x = 正弦定理:= ==2R余弦定理: a2=b2+c2-2bc cosαb2=a2+c2-2ac cosβc2=a2+b2-2ab cosγsin (α±β)=sin α cos β ± cos α sin βcos (α±β)=cos α cos β sin α sin β2 sin α cos β = sin (α+β) + sin (α-β)2 cos α sin β = sin (α+β) - sin (α-β)2 cos α cos β = cos (α-β) + cos (α+β)2 sin α sin β = cos (α-β) - cos (α+β)sin α + sin β = 2 sin (α+β) cos (α-β)sin α - sin β = 2 cos (α+β) sin (α-β)cos α + cos β = 2 cos (α+β) cos (α-β)cos α - cos β = -2 sin (α+β) sin (α-β)tan (α±β)=, cot (α±β)=ex=1+x+++…++ …sin x = x-+-+…++ …cos x = 1-+-+++ ln (1+x) = x-+-+++ tan-1 x = x-+-+++ (1+x)r =1+rx+x2+x3+ -1= n= n (n+1)= n (n+1)(2n+1)= [ n (n+1)]2Γ(x) = x-1e-t dt = 22x-1dt = x-1 dtβ(m, n) =m-1(1-x)n-1 dx=22m-1x cos2n-1x dx = dx

笼统说来,微积分的公式成千上万,其中的绝大多数的积分公式是没有必要记得。

需要记的的基本公式最多只需记十几个,法则四个,积分的特别方法四个。

满打满算也就不到20个。关键是要会运用自如。

楼主如有疑问,请联系我,您找题目来,我一步一步示范解给您看。

(1) ∫x^αdx=x^(α+1)/(α+1)+C (α≠-1)

(2) ∫1/x dx=ln|x|+C

(3) ∫a^x dx=a^x/lna+C

∫e^x dx=e^x+C

(4) ∫cosx dx=sinx+C

(5) ∫sinx dx=-cosx+C

(6) ∫(secx)^2 dx=tanx+C

(7) ∫(cscx)^2 dx=-cotx+C

(8) ∫secxtanx dx=secx+C

(9) ∫cscxcotx dx=-cscx+C

(10) ∫1/(1-x^2)^05 dx=arcsinx+C

(11) ∫1/(1+x^2)=arctanx+C

(12) ∫1/(x^2±1)^05 dx=ln|x+(x^2±1)^05|+C

(13) ∫tanx dx=-ln|cosx|+C

(14) ∫cotx dx=ln|sinx|+C

(15) ∫secx dx=ln|secx+tanx|+C

(16) ∫cscx dx=ln|cscx-cotx|+C

(17) ∫1/(x^2-a^2) dx=(1/2a)ln|(x-a)/(x+a)|+C

(18) ∫1/(x^2+a^2) dx=(1/a)arctan(x/a)+C

(19)∫1/(a^2-x^2)^05 dx=arcsin(x/a)+C

(20)∫1/(x^2±a^2)^05 dx=ln|x+(x^2±a^2)^05|+C

(21)∫(1-x^2)^05 dx=(x(1-x^2)^05+arcsinx)/2+C

补充回答: 微积分计算法则有很多: ”其实微分的实质就是求导”

1基本函数微分公式

dx^n=nx^(n-1)dx

dsinx=cosxdx

dcosx=-sinxdx

dtanx=(secx)^2dx

dcotx=-(cscx)^2dx

dloga x=1/xlnadx

da^x=a^xlnadx

de^x=e^xdx

dlnx=1/xdx

2微分本身的运算公式(以下f,g均为关于x的函数)

d(kf)=kdf

d(f+g)=df+dg

d(f-g)=df-dg

d(fg)=gdf+fdg

d(f/g)=(gdf-fdg)/g^2

3复合函数运算公式(f,g同上)

d[f(g)]=f'[g]dg

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

积分运算公式 ”积分实质就是已知导数,求原函数”

相对而言这相当难,而且答案不止一个

1基本公式(以下C为常数)

∫x^ndx=1/(n+1)[x^(n+1)]+C

∫sinxdx=-cosx+C

∫cosxdx=sinx+C

∫tanxdx=ln|secx|+C

∫cotxdx=ln|sinx|+C

∫e^xdx=e^x+C

∫a^xdx=a^x/lna+C

∫lnxdx=xlnx-x+C

∫loga xdx=lna[xlnx-x]+C

运算基本公式:(f,g为x的函数)

∫kfdx=k∫fdx

∫(f+g)dx=∫fdx+∫gdx

∫(f-g)dx=∫fdx-∫gdx

以下介绍三大方法求积分(难)

1第一换元法(凑微分法)

∫f[g(x)]g'(x)dx=∫f[g(x)]d[g(x)]=F[g(x)]+C

2第二换元法

这是运用例如三角换元,代数换元,倒数换元等来替换如根号,高次等不便积分的部分.

3.分部积分法

∫f(x)g(x)dx=F(x)g(x)-∫F(x)g'(x)dx

而∫F(x)g'(x)dx易求出

定积分用牛顿_菜布尼兹公式

∫ (1 + lnx)/x dx

= ∫ (1 + lnx) d(lnx)

= ∫ (1 + lnx) d(1 + lnx)

= (1 + lnx)²/2 + C

= (1 + 2lnx + ln²x)/2 + C

= lnx + (1/2)ln²x + C''

= ∫ (1 + lnx) d(lnx)

= ∫ d(lnx) + ∫ lnx d(lnx)

= lnx + (1/2)ln²x + C

令u = lnx,du = (1/x) dx

∫ (1 + lnx)/x dx = ∫ (1 + u)/x (x du)

= ∫ (1 + u) du

= ∫ du + ∫ u du

= u + u²/2 + C

= lnx + (1/2)ln²x + C

求微积分的公理?

微积分的公理包括:1、连续性:函数在某点处及其附近的取值应具有连续性;2、导数存在:函数应具有可导性;3、变分法:函数的变化量应与其变量的变化量成正比,即函数的增量与其变量的增量成正比;4、链式法则:函数的复合函数应等于其各个部分函数的复合函数;5、导数的运算法则:函数的导数的和、差、积、商的导数均能由它们的分量函数的导数得到。

欢迎分享,转载请注明来源:表白网

原文地址:https://h5.hunlipic.com/biaobai/3125132.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2024-02-06
下一篇2024-02-06

发表评论

登录后才能评论

评论列表(0条)

    保存