高数的基本公式大全如下:
1、数学公式:抛物线标准方程 y^2=2px y^2=-2px x^2=2py x^2=-2py。直棱柱侧面积 S=ch。斜棱柱侧面积 S=ch。正棱锥侧面积 S=1/2ch。正棱台侧面积 S=1/2(c+c)h。圆台侧面积 S=1/2(c+c)l=pi(R+r)l。球的表面积 S=4pir2。
2、圆柱侧面积 S=ch=2πh。圆锥侧面积 S=1/2cl=πrl。弧长公式 l=ar a是圆心角的弧度数r >0。扇形面积公式 s=1/2lr。锥体体积公式 V=1/3SH。
圆锥体体积公式 V=1/3pir2h。斜棱柱体积 V=SL 注:其中,S是直截面面积, L是侧棱长,柱体体积公式 V=sh。
对数函数基本性质:
1、过定点(1,0),即x=1时,y=0。
2、当 0<a<1 时,在(0,+∞)上是减函数;当a>1时,在(0,+∞)上是增函数。
3、对数函数是非奇非偶函数(无论增函数还是减函数都一样),它的反函数指数函数同样也是非奇非偶函数。
1、y=c(c为常数) y'=0
2、y=x^n y'=nx^(n-1)
3、y=a^x y'=a^xlna,y=e^x y'=e^x
4、y=logax y'=logae/x,y=lnx y'=1/x
5、y=sinx y'=cosx
6、y=cosx y'=-sinx
7、y=tanx y'=1/cos^2x
8、y=cotx y'=-1/sin^2x
9、y=arcsinx y'=1/√1-x^2
10、y=arccosx y'=-1/√1-x^2
导数的求导法则
由基本函数的和、差、积、商或相互复合构成的函数的导函数则可以通过函数的求导法则来推导。基本的求导法则如下:
1、求导的线性:对函数的线性组合求导,等于先对其中每个部分求导后再取线性组合(即①式)。
2、两个函数的乘积的导函数:一导乘二+一乘二导(即②式)。
3、两个函数的商的导函数也是一个分式:(子导乘母-子乘母导)除以母平方(即③式)。
4、如果有复合函数,则用链式法则求导。
高数常见函数求导公式如下图:
求导是数学计算中的一个计算方法,它的定义就是,当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。
在一个函数存在导数时,称这个函数可导或者可微分。可导的函数一定连续。不连续的函数一定不可导。
扩展资料:
一阶导数表示的是函数的变化率,最直观的表现就在于函数的单调性,定理:设f(x)在[a,b]上连续,在(a,b)内具有一阶导数,那么:
(1)若在(a,b)内f'(x)>0,则f(x)在[a,b]上的图形单调递增;
(2)若在(a,b)内f’(x)<0,则f(x)在[a,b]上的图形单调递减;
(3)若在(a,b)内f'(x)=0,则f(x)在[a,b]上的图形是平行(或重合)于x轴的直线,即在[a,b]上为常数。
函数的导数就是一点上的切线的斜率。当函数单调递增时,斜率为正,函数单调递减时,斜率为负。
导数与微分:微分也是一种线性描述函数在一点附近变化的方式。微分和导数是两个不同的概念。但是,对一元函数来说,可微与可导是完全等价的。
可微的函数,其微分等于导数乘以自变量的微分dx,换句话说,函数的微分与自变量的微分之商等于该函数的导数。因此,导数也叫做微商。函数y=f(x)的微分又可记作dy=f'(x)dx。
参考资料:
高数常见函数求导公式如下图:
求导是数学计算中的一个计算方法,它的定义就是,当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。
在一个函数存在导数时,称这个函数可导或者可微分。可导的函数一定连续。不连续的函数一定不可导。
扩展资料:
一阶导数表示的是函数的变化率,最直观的表现就在于函数的单调性,定理:设f(x)在[a,b]上连续,在(a,b)内具有一阶导数,那么:
(1)若在(a,b)内f'(x)>0,则f(x)在[a,b]上的图形单调递增;
(2)若在(a,b)内f’(x)<0,则f(x)在[a,b]上的图形单调递减;
(3)若在(a,b)内f'(x)=0,则f(x)在[a,b]上的图形是平行(或重合)于x轴的直线,即在[a,b]上为常数。
函数的导数就是一点上的切线的斜率。当函数单调递增时,斜率为正,函数单调递减时,斜率为负。
导数与微分:微分也是一种线性描述函数在一点附近变化的方式。微分和导数是两个不同的概念。但是,对一元函数来说,可微与可导是完全等价的。
可微的函数,其微分等于导数乘以自变量的微分dx,换句话说,函数的微分与自变量的微分之商等于该函数的导数。因此,导数也叫做微商。函数y=f(x)的微分又可记作dy=f'(x)dx。
你是准备考研吧,我也准备考研,收集了高数公式因为这里回答的字数限制~~不好写完导数公式;基本积分表;三角函数的有理式积分;一些初等函数: 两个重要极限三角函数公式;三角函数公式;倍角公式;半角公式;高阶导数公式——莱布尼兹(Leibniz)公式中值定理与导数应用;空间解析几何和向量代数;多元函数微分法及应用;微分法在几何上的应用 包含咯高数所有的公式答案补充
方向导数与梯度 多元函数的极值及其求法 重积分及其应用柱面坐标和球面坐标 曲线积分 高斯公式斯托克斯公式——曲线积分与曲面积分的关系常数项级数 级数审敛法 绝对收敛与条件收敛幂级数 函数展开成幂级数 一些函数展开成幂级数欧拉公式 三角级数 傅立叶级数微分方程的相关概念一阶线性微分方程 全微分方程二阶微分方程
高数三角函数公式如下:
1、公式一,设a为任意角,终边相同的角的同一三角函数的值相等:
2、公式二,设a为任意角,Π+a与a的三角函数值之间的关系:
3、公式三,任意角-a与a的三角函数值之间的关系:
4、公式四,Π-a与a的三角函数值之间的关系:
5、公式五,2Π-a与a的三角函数值之间的关系:
记背诀窍:奇变偶不变,符号看象限。奇变偶不变是指其中的奇偶是指π/2的奇偶数倍,变与不变是指三角函数名称的变化,若变,则是正弦变余弦,正切变余切。符号看象限是指根据角的范围以及三角函数在哪个象限的正负,来判断新三角函数的符号。
三角函数是数学中属于初等函数中的超越函数的函数。它们的本质是任何角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的。其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。
欢迎分享,转载请注明来源:表白网
评论列表(0条)