常见的导数公式大全

常见的导数公式大全,第1张

导数,也叫导函数值。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。接下来我就给大家分享常见的导数公式,一起看一下具体内容,供参考!

三角函数的导数公式

正弦函数:(sinx)'=cosx

余弦函数:(cosx)'=-sinx

正切函数:(tanx)'=sec²x

余切函数:(cotx)'=-csc²x

正割函数:(secx)'=tanx·secx

余割函数:(cscx)'=-cotx·cscx

反三角函数的导数公式

反正弦函数:(arcsinx)'=1/√(1-x^2)

反余弦函数:(arccosx)'=-1/√(1-x^2)

反正切函数:(arctanx)'=1/(1+x^2)

反余切函数:(arccotx)'=-1/(1+x^2)

其他函数导数公式

常函数:y=c(c为常数) y'=0

幂函数:y=xn y'=nx^(n-1)

指数函数:①y=ax y'=axlna ②y=ex y'=ex

对数函数:①y=logax y'=1/xlna ②y=lnx y'=1/x

什么是导数

设函数y=f(x)在点x0的某个邻域内有定义,当自变量x在x0处有增量Δx,(x0+Δx)也在该邻域内时,相应地函数取得增量Δy=f(x0+Δx)-f(x0);如果Δy与Δx之比当Δx→0时极限存在,则称函数y=f(x)在点x0处可导,并称这个极限为函数y=f(x)在点x0处的导数。

y=f(x)`和y=

df(x)/dx都是导数的表示方法

对于单一变量的一阶导数来说两者一样但是对于多元变量或者多变变量的高阶导数(1阶以上的)前者不能表示后者可以

高中数学对于后者没有要求,仅要求使用一阶导数最多二阶导数,但是对于大学的微积分来说后者使用更多

至于导数的定义如下:

设函数y=f(x)在点x0的某个邻域N(x0,δ)内有定义,当自变量x在x0处有增量△x(设x0+△x∈N(x0,δ)),函数y=f(x)相应的增量为△y=f(x0+△x)-f(x0)

  如果当△x→0时,函数的增量△y与自变量的增量△x之比的极限lim

△y/△x=lim

[f(x0+△x)-f(x0)]/△x存在,则称这个极限值为f(x)在x0处的导数或变化率通常可以记为f'(x0)或f'(x)|x=x0

对应的物理含义就是原函数表示速度那么导数就是加速度表示速度变化的快慢,在时间轴(X轴)所对应的速度变化率

导数定义:f'(x)=lim(h->0)[f(x+h)-f(x)]/h,lim(h→0)[f(x+h)-f(x-h)]/2h,lim(h→0)[f(x+2h)-f(x)]/2h

lim(h→0)[f(0+h)-f(0-h)]/2h=2lim(h→0)[f(0-h+2h)-f(0-h)]/2h=lim(h->0)2f'(0-h)当f'(x)在x=0处连续才有lim(h->0)2f'(0-h)=2f'(0)

扩展资料

常用导数公式:

1、y=c(c为常数) y'=0

2、y=x^n y'=nx^(n-1)

3、y=a^x y'=a^xlna,y=e^x y'=e^x

4、y=logax y'=logae/x,y=lnx y'=1/x

5、y=sinx y'=cosx

6、y=cosx y'=-sinx

7、y=tanx y'=1/cos^2x

8、y=cotx y'=-1/sin^2x

9、y=arcsinx y'=1/√1-x^2

10、y=arccosx y'=-1/√1-x^2

欢迎分享,转载请注明来源:表白网

原文地址:https://h5.hunlipic.com/biaobai/4079152.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2024-04-14
下一篇2024-04-14

发表评论

登录后才能评论

评论列表(0条)

    保存