clc,clear %这个不解释
for i=1:100 %i为1到100的范围内,每运行一次加1
R=rand(1,12); %R为一个12个元素的行向量,每个元素为随机值,在0~1之间
X(i)=sum(R)-6; %X向量的每个元素等于R的12个元素的和6的差,X为一个有12个数的行向量
end %循环结束
X=X'; %把X向量倒置,变成列向量
m=mean(X) %求X中元素的均值
v=var(X) %求X元素的样本方差
subplot(1,2,1),cdfplot(X)%绘制经验累计分布函数图,显示了一维向量X的累计概率分布F(x)的图形
subplot(1,2,2),histfit(X) % 正态曲线的直方图
h=kstest(X, [X normcdf(X, 0,1)])% %指定累积分布函数为cdf的测试,是否是以X为中心的标准正太分布,测试水平为5%
n=-1:3; %n=-1,0,1,2,3
x=1:5; %x=1,2,,5
k=0:500; %k=0,1,,500
w=(pi/500)k; %w=pi/500k,pi是31415926
X=x(exp(-jpi/500))^(n'k); %(^)中点的意思是元素操作,^是次方, n' 是吧n置换 ,j是虚数
magX=abs(X); %abs(x)就是数学中的|X|
angX=angle(X); %angle(X)是找角度的
subplot(2,1,1) %排列想成矩阵,那么就有2行一列,这个图是第一个位置
plot(w/pi,magX); %画图(x轴,y轴)
title('幅度响应'); %标题
grid; %加格子
ylabel('幅度'); %y轴标题
xlabel('以\pi为单位的频率'); %x轴标题
subplot(2,1,2) %第二张图
plot(w/pi,angX)
title('相位响应');
grid;
ylabel('相位/\pi');
xlabel('以\pi为单位的频率');
欢迎分享,转载请注明来源:表白网
评论列表(0条)