∫ (1 + lnx)/x dx
= ∫ (1 + lnx) d(lnx)
= ∫ (1 + lnx) d(1 + lnx)
= (1 + lnx)²/2 + C
= (1 + 2lnx + ln²x)/2 + C
= lnx + (1/2)ln²x + C''
或
= ∫ (1 + lnx) d(lnx)
= ∫ d(lnx) + ∫ lnx d(lnx)
= lnx + (1/2)ln²x + C
或
令u = lnx,du = (1/x) dx
∫ (1 + lnx)/x dx = ∫ (1 + u)/x (x du)
= ∫ (1 + u) du
= ∫ du + ∫ u du
= u + u²/2 + C
= lnx + (1/2)ln²x + C
lim(x->0) {∫(0,x)[e^(t^2)-1]dt}/(1-cosx)tanx
=lim(x->0) {∫(0,x)[e^(t^2)-1]dt}/[(1/2)x^3]
=lim(x->0) [e^(x^2)-1]/[(3/2)x^2]
=lim(x->0) (x^2)/[(3/2)x^2]
=2/3
欢迎分享,转载请注明来源:表白网
评论列表(0条)