求微积分公式?

求微积分公式?,第1张

1、基本公式:(ax^n) ' = anx^(n-1)(sinx) ' = cosx(cosx) ' = -sinx(e^x) ' = e^x(lnx) ' = 1/x积分公式就是它们的逆运算2、求导的基本法则:积的求导法则;商的求导法则;隐函数的链式求导法则3、基本的基本方法

常用积分公式:

1)∫0dx=c 

2)∫x^udx=(x^(u+1))/(u+1)+c

3)∫1/xdx=ln|x|+c

4)∫a^xdx=(a^x)/lna+c

5)∫e^xdx=e^x+c

6)∫sinxdx=-cosx+c

7)∫cosxdx=sinx+c

8)∫1/(cosx)^2dx=tanx+c

9)∫1/(sinx)^2dx=-cotx+c

10)∫1/√(1-x^2) dx=arcsinx+c

11)∫1/(1+x^2)dx=arctanx+c

12)∫1/(a^2-x^2)dx=(1/2a)ln|(a+x)/(a-x)|+c

13)∫secxdx=ln|secx+tanx|+c

分部积分中常见形式

(1)求含有e^x的函数的积分

∫xe^xdx=∫xd(e^x)=xe^x-∫e^xdx

(2)求含有三角函数的函数的积分

∫xcosxdx=∫xd(sinx)=xsinx-∫sinxdx

(3)求含有arctanx的函数的积分

∫xarctanxdx=1/2∫arctanxd(x^2)=1/2(x^2)arctanx-1/2∫(x^2)d(arctanx)

微积分基本公式:

1、第一基本定理

2、第二基本定理

对微积分基本定理比较直观的理解是:把函数在一段区间的“无穷小变化”全部“加起来”,会等于该函数的净变化,这里“无穷小变化”就是微分,“加起来”就是积分,净变化就是该函数在区间两端点的差。

扩展资料:

推广

不需要假设 f 在整个区间是连续的。这样定理的第一部分便说明:如果 f 是区间[a, b]内的任何一个勒贝格可积的函数,x0是[a, b]内的一个数,使得 f 在 x0连续,则

在x = x0是可导的,且F'(x0) = f(x0)。我们可以把f的条件进一步降低,假设它仅仅是可积的。这种情况下,我们便得出结论:F几乎处处可导,且F'(x)几乎处处等于f(x)。

这有时称为勒贝格微分定理。定理的第一部分对于任何具有原函数F的勒贝格可积函数f都是正确的(不是所有可积的函数都有原函数)。泰勒定理中把误差项表示成一个积分的形式,可以视为微积分基本定理的一个推广。

欢迎分享,转载请注明来源:表白网

原文地址:https://h5.hunlipic.com/biaobai/3133744.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2024-02-08
下一篇2024-02-08

发表评论

登录后才能评论

评论列表(0条)

    保存