1。lim(n→∞)cos (nπ/2)/n=1。lim(n→∞)Xn=0,解N时,N必须满足1/N<δ即N=1/δδ=0001,n=1000
2a为常数,所以当n→∞,lim(x→∞)a²/n²=0,所以lim(n→∞)根号下(1+a²/n²)=lim(n→∞)1=1
或:欲使|根号下(1+a²/n²)-1|<δ,则(1+a²/n²)<(1+δ)^2,解出n即可。
3。数列U为-1的n次方n/(n+1)时,数列 ▏Un▕ 收敛时,数列U不收敛。
因为lim(x→∞)Un=a,任取δ>0,存在N。使n>N,|Xn - a|<δ
当n>N时,
||Xn|-|a||<=|Xn - a|<δ,得证。
应该就是这样吧,忘的太厉害了小叶子。
欢迎分享,转载请注明来源:表白网
评论列表(0条)