ax^2+bx+c=0,Δ=b^2-4ac当Δ<0时,根为(-b±√(-Δ)i)/2a,其中i为虚数单位。
一元二次方程成立必须同时满足三个条件:
①是整式方程,即等号两边都是整式,方程中如果有分母;且未知数在分母上,那么这个方程就是分式方程,不是一元二次方程,方程中如果有根号,且未知数在根号内,那么这个方程也不是一元二次方程(是无理方程)。
②只含有一个未知数。
③未知数项的最高次数是2。
一元二次方程解法:
一、直接开平方法
形如(x+a)^2=b,当b大于或等于0时,x+a=正负根号b,x=-a加减根号b;当b小于0时。方程无实数根。
二、配方法
1、二次项系数化为1。
2、移项,左边为二次项和一次项,右边为常数项。
3、配方,两边都加上一次项系数一半的平方,化成(x=a)^2=b的形式。
4、利用直接开平方法求出方程的解。
你好!
令x=a+bi
代入原方程
a²+2abi - b² + a+b+(b-a)i + 8 =0
(2ab+b-a) i + a²+b²+a+b+8 =0
2ab+b-a=0
a²+b²+a+b+8 =0
解出a,b
其余同理
当Δ=b^2-4ac<0时,x={-b±[(4ac-b^2)^(1/2)]i}/2a(i是虚数单位)。
二次函数的基本表示形式为y=ax²+bx+c(a≠0)。二次函数最高次必须为二次, 二次函数的图像是一条对称轴与y轴平行或重合于y轴的抛物线。
二次函数表达式为y=ax²+bx+c(且a≠0),它的定义是一个二次多项式(或单项式),如果令y值等于零,则可得一个二次方程。该方程的解称为方程的根或函数的零点。
扩展资料:
一次项系数b和二次项系数a共同决定对称轴的位置:
1、当a>0,与b同号时(即ab>0),对称轴在y轴左。因为对称轴在左边则对称轴小于0,也就是- b/2a<0,所以 b/2a要大于0,所以a、b要同号。
2、当a>0,与b异号时(即ab<0),对称轴在y轴右。因为对称轴在右边则对称轴大于0,也就是- b/2a>0, 所以b/2a要小于0,所以a、b要异号。
3、可简单记忆为左同右异,即当对称轴在y轴左时,a与b同号(即a>0,b>0或a<0,b<0);当对称轴在y轴右时,a与b异号(即a0或a>0,b<0)(ab<0)。
-二次函数
“虚数i”的发现在数学史上有着举足轻重的作用。
“虚数i”到底是什么?为何如此神奇?到底有哪些重要作用?
这还得从看似平常却作用巨大的“数轴”说起!
在初中的数学学习中,“数轴”是学习数学的重要工具。
一定要将“数轴概念”深深地扎根于脑海才能敲开初等数学的大门而登堂入室。
自然数、整数、负数、无理数等“一切数的问题”只有放在“数轴”中去讨论,才不会显得亳无头绪。
在虚数还没发现之前,单条数轴,足以描述所有的实数。但到了17世纪时,数学家笛卡尔发现了虚数,这时一条数轴己显得不够用了,于是创立了著名的“笛卡尔直角坐标系”。
“直角坐标系”是我们进入初中就“必须要求”掌握的重要工具。
“笛卡尔直角坐标系”可以描述为
两条相互垂直于“原点”的两条数轴。当我们讨论“数的关系”时,“笛卡儿坐标系”就成了非常有用的工具,一切数都能在“直角坐标系”中找到对应的点。
“直角坐标系”第一次建立起了“数形结合”的思想,第一次使用数学公式描述几何图形中的“距离”和“角度”,在代数与几何之间架起了桥梁,笛卡尔建立了一门划时代的数学分支“解析几何”。
解析几何第一次引入了“变量”的概念,牛顿和莱布尼茨以此为基础创建了“微积分”。
“微积分学”进一步发展为“实变函数论”。
笛卡尔发现虚数出现后,在“直角坐标系”上建立了“复平面”,用公式可表示为:z=a+bi。
在人们没有发现复平面时,人们常常感觉“数不够用。
而现在,数学家们现己经严格证明,“一切数”都能在复平面中找到,“数的范围”不会再超过复数的范围。
由于虚数被发现,在十八世纪时,一门新的数学分支“复变函数”发展了起来,用于研究“复平面”上的函数。
复变函数以“复数为变量”,用于分析函数的规律与变化,其内容丰富,实用性极强,被用于“流体力学”和“航空动力学”,解决了飞机机翼的结构问题。
著名的欧拉公式以“虚i和π的积”做为“自然底数e”的指数,将“复变函数”与“三角函数”联系在了一起,这使得“复变函数”也笼罩上了一层神秘的色彩。
数学家称赞“复变函数”是一种非常和谐的理论,研究它简直是一种享受。
虚数的发现在自然学科中发挥出了重要的作用。20世纪初,“量子力学”诞生,具有传奇色彩的薛定谔方程问世,令人着迷的是,这个著名方程里也含有“虚数i”,
为了定量地描述微观粒子的状态,量子力学中引入了“波函数”作为“薛定谔方程的解”,这个神奇的波函数用“复数”的形式能清晰地描述微观粒子的状态,著名的“波动力学”诞生。
“量子力学”和“相对论”一起成为了现代物理的两大支柱。
现代科技蓬勃发展的今天,虚数所发挥出来的作用越来越显著。那些含有虚数的公式,仿佛是神的语言,人们总是能不断地从中领域出一些新的理论。
1966年苏士侃在200年前的“欧拉公式”中发现了弦理论的存在,而灵感正是来源于公式中的“虚数i”
1990年,维顿提出了“11度空间”的“M理论”(矩阵理论),统一了之前各种“极限状态”下的弦理论结果。
弦理论的出现,科学家们认为这将是一个终极理论。
2007年4月,美国的“费米国家加速器实验室”在“一定程度”上证明了“弦理论”在“十维空间”的正确性。
但是在己有的条件下,用物理实验彻底的证明“弦理论”的道路还非常遥远。
在这种情况下,只有依靠数学的“严密逻辑”来证明其正确性。而虚数将再次发挥出出它的优势,为人们提供新的视角。
在现代化的今天,“超弦理论”已站在了“现代物理”研究的最前沿,最有希望找到被称为物理学圣杯的“四种基本力的统一理论”,以解释“经典物理学”、“量子力学”等无法解释的神秘现象。
如果没有虚数的发现,就没有量子力学,21世纪的一切自然学科都无法进行下去。
随着新的理论不断涌现,虚数也会发挥出它越来越大的作用,未来的世界一定会更加精彩。
小伙伴们,你们对此有什么看法呢?欢迎留言讨论。
楼主你好,首先必须确定的是这个定义是肯定没错的。至于出现你说的情况,我想可以给以如下解释,就拿i^2=-1来说,如果你先提出一个4,就得到了i^(405)=(i^4)^05,但是可以看到,i^4=1这个是没错,但是1的05次方,即为1的开方,其结果有1与-1两种情况,也就是说,1与-1的平方这个时候都是1了,所以这样就不能够一概而论了。而其他情况,比如更复杂的i^(4/3)这样的,其实如果楼主有更高级的知识,可以用尼莫夫定理,将i化为cos90+isin90,其结果就为cos(904/3)+isin(904/3),这样看的话可能更能解释你说的情况。
欢迎分享,转载请注明来源:表白网
评论列表(0条)