二次函数焦点,准线的一般公式:
y=a(x-x1)(x-x2)。其中x1,x2是方程y=ax2+bx+c(a≠0)的两根。
两点式又叫两根式,两点式:y=a(x-x1)(x-x2),其中x1,x2是抛物线与x轴的交点的横坐标,即一元二次方程ax2+bx+c=0的两个根,a≠0。
知道抛物线的与x轴的两个交点(x1,0),(x2,0),并知道抛物线过某一个点(m,n),设抛物线的方程为y=a(x-x1)(x-x2),然后将点(m,n)代入去求得二次项系数a。
二次函数的知识要点:
1、要理解函数的意义。
2、要记住函数的几个表达形式,注意区分。
3、一般式,顶点式,交点式,等,区分对称轴,顶点,图像,y随着x的增大而减小(增大)(增减值)等的差异性。
4、联系实际对函数图象的理解。
5、计算时,看图像时切记取值范围。
6、随图象理解数字的变化而变化。
二次函数考点及例题
二次函数知识很容易与其他知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现。
你好:
二次函数:y=ax^2+bx+c
韦达定理
x1+x2=-b/a
x1x2=c/a
如果满意记得采纳哦!
求好评!
(^__^) 嘻嘻……
定义与定义表达式
一般地,自变量x和因变量y之间存在如下关系:
y=ax^2+bx+c
(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a0时,函数在x= -b/2a处取得最小值f(-b/2a)=4ac-b^2/4a;在{x|x-b/2a}上是增函数;抛物线的开口向上;函数的值域是{y|y≥4ac-b^2/4a}相反不变
当b=0时,抛物线的对称轴是y轴,这时,函数是偶函数,解析式变形为y=ax^2+c(a≠0)
7定义域:R
值域:(对应解析式,且只讨论a大于0的情况,a小于0的情况请读者自行推断)①[(4ac-b^2)/4a,正无穷);②[t,正无穷)
奇偶性:非奇非偶 (当且仅当b=0时,函数解析式为f(x)=ax^2+c, 此时为偶函数)
周期性:无
解析式:
①y=ax^2+bx+c[一般式]
⑴a≠0
⑵a>0,则抛物线开口朝上;a<0,则抛物线开口朝下;
⑶极值点:(-b/2a,(4ac-b^2)/4a);
⑷Δ=b^2-4ac,
Δ>0,图象与x轴交于两点:
([-b+√Δ]/2a,0)和([-b+√Δ]/2a,0);
Δ=0,图象与x轴交于一点:
(-b/2a,0);
Δ<0,图象与x轴无交点;
②y=a(x-h)^2+t[配方式]
此时,对应极值点为(h,t),其中h=-b/2a,t=(4ac-b^2)/4a);
二次函数与一元二次方程
特别地,二次函数(以下称函数)y=ax^2+bx+c,
当y=0时,二次函数为关于x的一元二次方程(以下称方程),
即ax^2+bx+c=0
此时,函数图像与x轴有无交点即方程有无实数根
函数与x轴交点的横坐标即为方程的根
1.二次函数y=ax^2,y=a(x-h)^2,y=a(x-h)^2 +k,y=ax^2+bx+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表:
解析式
y=ax^2
y=a(x-h)^2
y=a(x-h)^2+k
y=ax^2+bx+c
顶点坐标
(0,0)
(h,0)
(h,k)
(-b/2a,sqrt[4ac-b^2]/4a)
对 称 轴
x=0
x=h
x=h
x=-b/2a
当h>0时,y=a(x-h)^2的图象可由抛物线y=ax^2向右平行移动h个单位得到,
当h0,k>0时,将抛物线y=ax^2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)^2+k的图象;
当h>0,k
两根式是二次函数的常见的一种表达方式在已知二次函数图像与x轴两个交点的坐标的时候,设抛物线与x轴两个交点的横坐标为x1,x2,则可以设函数表达式为y=a(x-x1)(x-x2),此时只要代入第三点坐标值,即可求出a的数值,从而得到二次函数的表达式
二次函数的公式是y等于ax加bx加c。如果知道三个点将三个点的坐标带入也就是说三个方程解三个未知数如题方程一8等于a2加b2加c化简8等于c,也就是说c就是函数与Y轴的交点。
二次函数的公式的方法
如果知道过x轴的两个坐标y=0的两个坐标的值叫做这个方程的两个根,也可以用对称轴公式x=-b/2a算或者使用韦达定理一元二次方程ax+bx+c=0(a≠0且△=b-4ac≥0)中设两个根为X1和X2则X1+X2=-b/aX1X2=c/a。
方程二7=a×62+b×6+c化简7=36a+6b+c,方程三7=a×(-6)2+b×(-6)+c化简7=36a-6b+c解出abc就可以了上边这种是老老实实的解法对(6,7)(-6,7)这两个坐标可以求出一个对称轴也就是X=0通过对称轴公式x=-b/2a。
欢迎分享,转载请注明来源:表白网
评论列表(0条)