直线方程的一般式:Ax + By + C = 0 (A≠0 && B≠0)适用于所有直线。
斜率是指一条直线与平面直角坐标系横轴正半轴方向的夹角的正切值,即该直线相对于该坐标系的斜率, 一般式公式:k = -A/B。
横截距是指一条直线与横轴相交的点(a,0)与原点的距离,一般式的公式:a = -C/A。
纵截距是指一条直线与纵轴相交的点(0,b)与原点的距离,一般式的公式:b = -C/B。
例:已知一条直线方程2x - y + 3 = 0
1、横截距(-C/A): -3/2 = -15;
2、纵截距(-C/B): -3/-1 = 3;
3、斜率(-A/B): -2/-1 = 2。
扩展资料
直线方程的种类:
1、点斜式:y-y0=k(x-x0) 适用于不垂直于x轴的直线
表示斜率为k,且过(x0,y0)的直线。
2、截距式:x/a+y/b=1适用于不过原点或不垂直于x轴、y轴的直线
表示与x轴、y轴相交,且x轴截距为a,y轴截距为b的直线。
3、斜截式:y=kx+b适用于不垂直于x轴的直线
表示斜率为k且y轴截距为b的直线。
4、两点式:适用于不垂直于x轴、y轴的直线
表示过(x1,y1)和(x2,y2)的直线。
5、两点式
(y-y1)/(y2-y1)=(x-x1)/(x2-x1) (x1≠x2,y1≠y2)
交点式:f1(x,y) m+f2(x,y)=0 适用于任何直线
表示过直线f1(x,y)=0与直线f2(x,y)=0的交点的直线。
6、点平式:f(x,y) -f(x0,y0)=0适用于任何直线
表示过点(x0,y0)且与直线f(x,y)=0平行的直线。
7、法线式:x·cosα+ysinα-p=0适用于不平行于坐标轴的直线
过原点向直线做一条的垂线段,该垂线段所在直线的倾斜角为α,p是该线段的长度。
8、点向式:(x-x0)/u=(y-y0)/v (u≠0,v≠0)适用于任何直线
表示过点(x0,y0)且方向向量为(u,v )的直线。
9、法向式:a(x-x0)+b(y-y0)=0适用于任何直线
表示过点(x0,y0)且与向量(a,b)垂直的直线。
—条直线与某平面直角坐标系横坐标轴正半轴方向所成的角的正切值即该直线相对于该坐标系的斜率。如果直线与x轴互相垂直,直角的正切值无穷大,故此直线不存在斜率。对于任意函数上任意一点,其斜率等于其切线与x轴正方向所成角的正切值,即k=tana。两条垂直相交直线的斜率相乘积为-1:k1+k2=-1。
一般计算方法如下:
一般式
对于直线一般式Ax+By+C=0,斜率公式为:k=-a/ b。
斜截式
当直线L的斜率存在时,斜截式y=kx+b,当x=0时,y=b。
点斜式
当直线L的斜率存在时,点斜式y2-y1=k(x2-x1)。
相关公式
当直线L的斜率存在时,斜截式y=kx+b。当x=0时,y=b。
当直线L的斜率存在时,点斜式y2-y1=k(x2-x1)。
对于任意函数上任意一点,其斜率等于其切线与x轴正方向所成角的正切值,即k=tan C 。
斜率计算:直线ax+by+c=0,斜率k=-a/b。
设直线y=kx+b (k≠0),则有
①两条垂直相交直线的斜率相乘积为-1:k1k2=一1;
②两条平行直线的斜率相等:k1=k2,且b1≠b2。
楼主
你好
斜率公式可以通过做直角三角形来解释和推导
设线上两点(X1,Y1)(X2,Y2),则斜线的斜率是L
L=(Y1-Y2)/(X1-X2)
觉得对的话
要采纳给分哈
嘻嘻
高中数学直线的斜率知识点总结如下:
1直线斜率
当直线L的斜率存在时,斜截式y=kx+b当k=0时y=b
当直线L的斜率存在时,点斜式y2—y1=k(X2—X1),
当直线L在两坐标轴上存在非零截距时,有截距式X/a+y/b=1
对于任意函数上任意一点,其斜率等于其切线与x轴正方向的夹角,即tanα
斜率计算:ax+by+c=0中,k=-a/b
直线斜率公式:k=(y2-y1)/(x2-x1)
两条垂直相交直线的斜率相乘积为-1:k1k2=-1
当k>0时,直线与x轴夹角越大,斜率越大;当k<0时,直线与x轴夹角越大,斜率越小。
2倾斜角和斜率
1)直线的倾斜角的概念:当直线l与x轴相交时,取x轴作为基准,x轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角特别地,当直线l与x轴平行或重合时,规定α=0°
2)倾斜角α的取值范围:0°≤α<180°当直线l与x轴垂直时,α=90°
3直线的斜率:
一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k表示,也就是k=tanα
⑴当直线l与x轴平行或重合时,α=0°,k=tan0°=0;
⑵当直线l与x轴垂直时,α=90°,k不存在
由此可知,一条直线l的倾斜角α一定存在,但是斜率k不一定存在
4直线的斜率公式:
给定两点P1(x1,y1),P2(x2,y2),x1≠x2,用两点的坐标来表示直线P1P2的斜率:
斜率公式:k=y2-y1/x2-x1
5两条直线的平行与垂直
1)两条直线都有斜率而且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,那么它们平行,即
注意:上面的等价是在两条直线不重合且斜率存在的前提下才成立的,缺少这个前提,结论并不成立即如果k1=k2,那么一定有L1∥L2
2)两条直线都有斜率,如果它们互相垂直,那么它们的斜率互为负倒数;反之,如果它们的斜率互为负倒数,那么它们互相垂直
欢迎分享,转载请注明来源:表白网
评论列表(0条)