数学表白公式是如下:
1、r=a(1-sinθ)
据说这是笛卡尔死前寄出的最后一封情书的内容,这里面隐藏着一个刻骨铭心的秘密。
2、(x2+y2)-16abs(x)y=225
一生只为等待能手绘这个函数给我的人。出于审美需求,我们的心型图形往往是这样的。
3、 X2+(y+3√X2)2=1
画出函数图像来,是一个心。
4、Y=1/X、X2+Y2=9、Y=│-2X│、X=-3│Sin Y│
一样画出函数图像来,分别是ILVE。
5、128√e986
上面擦去一半左右,e不要擦到了就剩I LOVE YOU。
log对数函数基本十个公式如下:
1、lnx+lny=lnxy。
2、lnx-lny=ln(x/y)。
3、Inxn=nlnx。
4、In(n√x)=lnx/n。
5、lne=1。
6、In1=0。
7、Iog(ABC)=logA+logB+logC。logA'n=nlogA。
8、logaY =logbY/logbA。
9、log(a)(MN)=log(a)(M)+log(a)(N)。
10、Iog(A)M=log(b)M/log(b)A(b>0Eb#1)。
指数的运算法则:
1、[a^m]×[a^n]=a^(m+n) 同底数幂相乘,底数不变,指数相加
2、[a^m]÷[a^n]=a^(m-n) 同底数幂相除,底数不变,指数相减
3、[a^m]^n=a^(mn) 幂的乘方,底数不变,指数相乘
一般地,函数y=logaX(a>0,且a≠1)。
对数函数是以幂为自变量,指数为因变量,底数为常量的函数。如果a^x =N,那么数x叫做以a为底N的对数,记作x=logaN,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数。
一般地,函数y=logaX就叫做对数函数,其中“log”是拉丁文logarithm的缩写。
介绍
在实数域中,真数式子没根号那就只要求真数式大于零,如果有根号,要求真数大于零还要保证根号里的式子大于等于零(若为负数,则值为虚数),底数则要大于0且不为1。
在一个普通对数式里a<0,或=1的时候是会有相应b的值。但是,根据对数定义:log以a为底a的对数;如果a=1或=0那么log以a为底a的对数就可以等于一切实数(比如log11也可以等于2,3,4,5,等等)。
r=a(1-sinθ)
据说这是笛卡尔死前寄出的最后一封情书的内容,这里面隐藏着一个刻骨铭心的秘密。
(x2+y2)-16abs(x)y=225。
一生只为等待能手绘这个函数给我的人。出于审美需求,我们的心型图形往往是这样的:
X2+(y+3√X2)2=1。
画出函数图像来,是一个心。
Y=1/X、X2+Y2=9、Y=│-2X│、X=-3│SinY│。
1、log(a)(MN)=log(a)(M)+log(a)(N);
2、log(a)(M/N)=log(a)(M)-log(a)(N);
3、log(a)(M^n)=nlog(a)(M) (n∈R)
4、log(a^n)(M)=1/nlog(a)(M)(n∈R)
5、换底公式:log(A)M=log(b)M/log(b)A (b>0且b≠1)
6、log(a^n)M^m=(m/n)log(a)M
7、对数恒等式:a^log(a)N=N; log(a)a^b=b
扩展资料:
与指数的关系
同底的对数函数与指数函数互为反函数。
当a>0且a≠1时,ax=N
x=㏒aN。
关于y=x对称。
对数函数的一般形式为 y=㏒ax,它实际上就是指数函数的反函数(图象关于直线y=x对称的两函数互为反函数),可表示为x=ay。因此指数函数里对于a的规定(a>0且a≠1),右图给出对于不同大小a所表示的函数图形:
关于X轴对称、当a>1时,a越大,图像越靠近x轴、当0<a<1时,a越小,图像越靠近x轴。
可以看到,对数函数的图形只不过是指数函数的图形的关于直线y=x的对称图形,因为它们互为反函数。
-对数函数
log对数函数基本公式是y=logax(a>0 & a≠1)。
一般地,对数函数是以幂(真数)为自变量,指数为因变量,底数为常量的函数。
对数函数是6类基本初等函数之一,其中对数的定义:
如果ax=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=logaN,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数。
一般地,函数y=logaX(a>0,且a≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数。
底真同对数正,底真异对数负。解释如下:
也就是说:若y=logab (其中a>0,a≠1,b>0)。
当0<a<1, 0<b<1时,y=logab>0。
当a>1, b>1时,y=logab>0。
当0<a<1, b>1时,y=logab<0。
当a>1, 0<b<1时,y=logab<0。
可以表白的数学公式:128根号e980、[(n+528)×5–39343]÷05-10×n、X2+(y+3√X2)2=1、r=a(1-cosθ)或r=a(1+cosθ)、x2+(y-3√x2)2=1。
1、128根号e980
I Love You的数学公式最早来源于韩国歌手Kwill的一首MV,叫《I need you》。女孩在黑板上写了一个数学公式“128根号e980”,让男主角解答,男主角冥思苦想都算不出来,于是女孩拿起刷子擦掉公式的上半部分,就变成了英文的 I Love You。
2、[(n+528)×5–39343]÷05-10×n ( N=任意数)
一个任意实数,加528,结果乘以5,再减34343结果乘以2,最后减去这个数的10倍。
3、X2+(y+3√X2)2=1
画出函数图像来,是一个心。
4、r=a(1-cosθ)或r=a(1+cosθ)(a>0)水平方向
心形线
5、x2+(y-3√x2)2=1
数轴上形成一颗爱心,这就是数学系的专属“爱心曲线”
(loga(x))'=1/(xlna)
特别地(lnx)'=1/x
对数和对数函数是高中数学的重要内容,是高考的必考知识,需要同学们无条件地掌握。但是很多同学在高一时就没有掌握好对数知识,以至于成为整个高中阶段数学学习的绊脚石。
大多同学没学好对数知识,主要原因是觉得对数的公式太多,杂乱无章。其中要注意的是:
加(减)法则:[f(x)+g(x)]'=f(x)'+g(x)'
乘法法则:[f(x)g(x)]'=f(x)'g(x)+g(x)'f(x)
除法法则:[f(x)/g(x)]'=[f(x)'g(x)-g(x)'f(x)]/g(x)^2
log函数对数注意
对数起初是为了解决天文学中的计算问题而产生的,因为实际应用性强,所以应用范围更广。特别是,在自然科学中,自然对数lnx应用更加普遍。
在高考中,对数问题比比皆是,尤其是函数与导数压轴题中,经常出现自然对数函数f(x)=lnx及复合函数。因而,对数函数是复习函数的重中之重。
欢迎分享,转载请注明来源:表白网
评论列表(0条)