log的运算公式是什么?

log的运算公式是什么?,第1张

对数的运算公式:

1、log(a) (M·N)=log(a) M+log(a) N

2、log(a) (M÷N)=log(a) M-log(a) N

3、log(a) M^n=nlog(a) M

4、log(a)blog(b)a=1

5、log(a) b=log (c) b÷log (c) a

指数的运算公式:

1、[a^m]×[a^n]=a^(m+n) 同底数幂相乘,底数不变,指数相加

2、[a^m]÷[a^n]=a^(m-n) 同底数幂相除,底数不变,指数相减

3、[a^m]^n=a^(mn) 幂的乘方,底数不变,指数相乘 

4、[ab]^m=(a^m)×(a^m) 积的乘方,等于各个因式分别乘方,再把所得的幂相乘

扩展资料:

对数的发展历史:

对数加以改造使之广泛流传的是纳皮尔的朋友布里格斯(HBriggs,1561—1631),他通过研究《奇妙的对数定律说明书》,感到其中的对数用起来很不方便,于是与纳皮尔商定,使1的对数为0,10的对数为1,这样就得到了以10为底的常用对数。

由于所用的数系是十进制,因此它在数值上计算具有优越性。1624年,布里格斯出版了《对数算术》,公布了以10为底包含1~20000及90000~100000的14位常用对数表。

根据对数运算原理,人们还发明了对数计算尺。300多年来,对数计算尺一直是科学工作者,特别是工程技术人员必备的计算工具,直到20世纪70年代才让位给电子计算器。但是,对数的思想方法却仍然具有生命力。

从对数的发明过程可以看到,社会生产、科学技术的需要是数学发展的主要动力。建立对数与指数之间的联系的过程表明,使用较好的符号体系对于数学的发展是至关重要的。实际上,好的数学符号能够大大地节省人的思维负担。数学家们对数学符号体系的发展与完善作出了长期而艰苦的努力

1、如果a>0,且a≠1,M>0,N>0那么:

(1) loga(M·N)=logaM+logaN;

(2) logaNM=logaM-logaN;

(3) logaMn=nlogaM(n∈R)

(4)(n∈R)

2、换底公式

logab=logcalogcb(a>0,且a≠1;c>0,且c≠1;b>0)

扩展资料

对数函数的运算性质的难点:

一、底数不统一

对数的运算性质是建立在底数相同的基础上的,但实际问题中,却经常要遇到底数不相同的情况,碰到这种情形,主要有三种处理的方法:

1、化为指数式

对数函数与指数函数互为反函数,它们之间有着密切的关系:logaN=bab=N,因此在处理有关对数问题时,经常将对数式化为指数式来帮助解决。

2、利用换底公式统一底数

换底公式可以将底数不同的对数通过换底把底数统一起来,然后再利用同底对数相关的性质求解。

3、利用函数图象

函数图象可以将函数的有关性质直观地显现出来,当对数的底数不相同时,可以借助对数函数的图象直观性来理解和寻求解题的思路。

-对数公式

就是求对数。

比如,底数为2时。16等于4个2相乘,log16=4,同理log32=5,log1=0,log(1/2)=-1

底数为4时,log

16=2

log32=5/2,log1=0

log0无意义

因此对数函数必须清楚其底数是什么。

一般都是以10为底数,或者以一个无理数e为底数。

log函数运算公式是按所指定的底数,返回某个数的对数。

1、log函数将自然数划为n个等区间,每个区间大小相等。但是每个区间的末端值以底数为倍数依次变化:10,100,1000; 2,4,8;即相对的小值间的间距占有和更大值的间距一样的区间。

2、函数y=logaX叫做对数函数。对数函数的定义域是(0,+∞)零和负数没有对数。

底数a为常数,其取值范围是(0,1)∪(1,+∞)。log的话我们是要加一个底数的,这个数可以是任何数,但lg不同,我们不能加底数,因为lg是log10的简写,就像㏑是loge的简写一样。

3、所有的对数函数计算核心都是利用多项式展开。然后多项式求和计算结果。为了性能或者精度的要求可能会对展开后的求和式子做进一步优化。

log函数公式有:

log(a)(MN)=log(a)(M)+log(a)(N);

log(a)(M/N)=log(a)(M)-log(a)(N);

log(a)(M^n)=nlog(a)(M);

log(a^n)(M)=1/nlog(a)(M);

a^log(a)N=N等。

扩展资料

推导公式

log(1/a)(1/b)=log(a^-1)(b^-1)=-1logab/-1=loga(b)

loga(b)logb(a)=1

loge(x)=ln(x)

lg(x)=log10(x)

欢迎分享,转载请注明来源:表白网

原文地址:https://h5.hunlipic.com/biaobai/3120519.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2024-02-06
下一篇2024-02-06

发表评论

登录后才能评论

评论列表(0条)

    保存