反函数与原函数的关系公式:dy=(df/dx)dx。一般来说,设函数y=f(x)(x∈A)的值域是C,若找得到一个函数g(y)在每一处g(y)都等于x,这样的函数x=g(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记作y=f-1(x)。
原函数是指对于一个定义在某区间的已知函数f(x),如果存在可导函数F(x),使得在该区间内的任一点都存在dF(x)=f(x)dx,则在该区间内就称函数F(x)为函数f(x)的原函数。
一般来说,设函数y=f(x)(x∈A)的值域是C,若找得到一个函数g(y)在每一处g(y)都等于x,这样的函数x= g(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记作y=f-1(x) 。反函数y=f -1(x)的定义域、值域分别是函数y=f(x)的值域、定义域。最具有代表性的反函数就是对数函数与指数函数。
一般地,如果x与y关于某种对应关系f(x)相对应,y=f(x),则y=f(x)的反函数为x=f (y)或者y=f-1(x)。存在反函数(默认为单值函数)的条件是原函数必须是一一对应的(不一定是整个数域内的)。注意:上标"−1"指的是函数幂,但不是指数幂。
设函数y=f(x)的定义域是D,值域是f(D)。如果对于值域f(D)中的每一个y,在D中有且只有一个y使得g(y)=x,则按此对应法则得到了一个定义在f(D)上的函数,并把该函数称为函数y=f(x)的反函数,记为
由该定义可以很快得出函数f的定义域D和值域f(D)恰好就是反函数f-1的值域和定义域,并且f-1的反函数就是f,也就是说,函数f和f-1互为反函数,即:
反函数与原函数的复合函数等于x,即:
习惯上我们用x来表示自变量,用y来表示因变量,于是函数y=f(x)的反函数通常写成
。
例如,函数
的反函数是
。
相对于反函数y=f-1(x)来说,原来的函数y=f(x)称为直接函数。反函数和直接函数的图像关于直线y=x对称。这是因为,如果设(a,b)是y=f(x)的图像上任意一点,即b=f(a)。根据反函数的定义,有a=f-1(b),即点(b,a)在反函数y=f-1(x)的图像上。而点(a,b)和(b,a)关于直线y=x对称,由(a,b)的任意性可知f和f-1关于y=x对称。
于是我们可以知道,如果两个函数的图像关于y=x对称,那么这两个函数互为反函数。这也可以看做是反函数的一个几何定义。
在微积分里,f (n)(x)是用来指f的n次微分的。
若一函数有反函数,此函数便称为可逆的(invertible)。
一函数f若要是一明确的反函数,它必须是一双射函数,即:
(单射)陪域上的每一元素都必须只被f映射到一次:不然其反函数将必须将元素映射到超过一个的值上去。
(满射)陪域上的每一元素都必须被f映射到:不然将没有办法对某些元素定义f的反函数。
若f为一实变函数,则若f有一明确反函数,它必通过水平线测试,即一放在f图上的水平线
必对所有实数k,通过且只通过一次。[1]反函数存在定理
定理:严格单调函数必定有严格单调的反函数,并且二者单调性相同。
在证明这个定理之前先介绍函数的严格单调性。
设y=f(x)的定义域为D,值域为f(D)。如果对D中任意两点x1和x2,当x1<x2时,有y1<y2,则称y=f(x)在D上严格单调递增;当x1<x2时,有y1>y2,则称y=f(x)在D上严格单调递减。
证明:设f在D上严格单增,对任一y∈f(D),有x∈D使f(x)=y。
而由于f的严格单增性,对D中任一x'<x,都有y'<y;任一x''>x,都有y''>y。总之能使f(x)=y的x只有一个,根据反函数的定义,f存在反函数f-1。
任取f(D)中的两点y1和y2,设y1<y2。而因为f存在反函数f-1,所以有x1=f-1(y1),x2=f-1(y2),且x1、x2∈D。
若此时x1≥x2,根据f的严格单增性,有y1≥y2,这和我们假设的y1<y2矛盾。
因此x1<x2,即当y1<y2时,有f-1(y1)<f-1(y2)。这就证明了反函数f-1也是严格单增的。
如果f在D上严格单减,证明类似。
希望我能帮助你解疑释惑。
反三角函数是数学学习中一个很重要的知识点,下面整理了相关知识点和公式,希望能帮助到大家。
反三角函数的定义
设函数y=f(x)的定义域是A,值域是C.我们从式子y=f(x)中解出x得到式子x=φ(y).如果对于y在C中的任何一个值,通过式子x=φ(y),x在A中都有唯一的值和它对应,那么式子x=φ(y)叫函数y=f(x)的反函数,记作x=f-1(y),习惯表示为y=f-1(x)。注意:函数y=f(x)的定义域和值域,分别是反函数y=f-1(x)的值域和定义域。
例如:f(x)的定义域是[-1,+∞],值域是[0,+∞),它的反函数定义域为[0,+∞),值域是[-1,+∞)。
反三角函数公式余角关系
arcsin(x)+arccos(x)=π/2
arctan(x)+arccot(x)=π/2
arcsec(x)+arccsc(x)=π/2
负数关系
arcsin(-x)=-arcsin(x)
arccos(-x)=π-arccos(x)
arctan(-x)=-arctan(x)
arccot(-x)=π-arccot(x)
arcsec(-x)=π-arcsec(x)
arccsc(-x)=-arccsc(x)
反三角函数其他公式cos(arcsinx)=√(1-x^2)
arcsin(-x)=-arcsinx
arccos(-x)=π-arccosx
arctan(-x)=-arctanx
arccot(-x)=π-arccotx
arcsinx+arccosx=π/2=arctanx+arccotx
sin(arcsinx)=cos(arccosx)=tan(arctanx)=cot(arccotx)=x
当x∈[-π/2,π/2]有arcsin(sinx)=x
x∈[0,π],arccos(cosx)=x
x∈(-π/2,π/2),arctan(tanx)=x
x∈(0,π),arccot(cotx)=x
x>0,arctanx=π/2-arctan1/x,arccotx类似
若(arctanx+arctany)∈(-π/2,π/2),则arctanx+arctany=arctan((x+y)/(1-xy))
反函数的导数是原函数导数的倒数。求y=arcsinx的导函数,反函数的导数就是原函数导数的倒数。首先,函数y=arcsinx的反函数为x=siny,所以:y‘=1/sin’y=1/cosy,因为x=siny,所以cosy=√1-x2,所以y‘=1/√1-x2。
反函数性质
(1)函数存在反函数的充要条件是,函数的定义域与值域是一一映射;
(2)一个函数与它的反函数在相应区间上单调性一致;
(3)大部分偶函数不存在反函数(当函数y=f(x), 定义域是{0} 且 f(x)=C (其中C是常数),则函数f(x)是偶函数且有反函数,其反函数的定义域是{C},值域为{0} )。奇函数不一定存在反函数,被与y轴垂直的直线截时能过2个及以上点即没有反函数。若一个奇函数存在反函数,则它的反函数也是奇函数。
(4)一段连续的函数的单调性在对应区间内具有一致性;
(5)严增(减)的函数一定有严格增(减)的反函数;
(6)反函数是相互的且具有唯一性;
(7)定义域、值域相反对应法则互逆(三反)
原函数已知函数f(x)是一个定义在某区间的函数,如果存在可导函数F(x),使得在该区间内的任一点都有dF(x)=f(x)dx,则在该区间内就称函数F(x)为函数f(x)的原函数。
求对数函数的反函数的公式:log(a)(MN)=log(a)(M)+log(a)(N)。一般来说,设函数y=f(x)(x∈A)的值域是C,若找得到一个函数g(y)在每一处g(y)都等于x,这样的函数x=g(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记作y=f-1(x)。
一般地,对数函数是以幂(真数)为自变量,指数为因变量,底数为常量的函数。对数函数是6类基本初等函数之一。其中对数的定义:如果ax=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=logaN,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数。
欢迎分享,转载请注明来源:表白网
评论列表(0条)