欧氏几何有哪些优点和缺点?

欧氏几何有哪些优点和缺点?,第1张

欧式几何就是我们在初中和高中所学的几何体系,其中有几个公理来支撑其运行。如大家都知道的,两条平行线永远不会相交,犹如铁轨。

后来有人就针对“两条平行线永远不会相交”提出自己的设想:假如两条会相交的话,那又会出现什么情况呢?首先对此研究的是黎曼,简单的例子就是地球上的任意两条经度线,不是都相交到南北极了吗?对了,黎曼几何或者说是球面几何就产生了。

最近在看到一些关于非欧几何如何出现的材料,感到小小的震撼。欧氏几何(又称为平面几何)从公元前300年到公元19世纪,共2100年无人撼动。从古希腊时代到公元1800年间,许多数学家都尝试用欧几里得几何中的其他公理来证明欧几里得的平行公理,但是结果都归于失败。19世纪,德国数学家高斯、俄国数学家罗巴切夫斯基、匈牙利数学家波尔约等人各自独立地认识到这种证明是不可能的。也就是说,平行公理是独立于其他公理的,并且可以用不同的“平行公理”来替代它,从而开创了非欧几何的出现。接下来,简要地把介绍一些认知。

欧式几何的传统描述是一个公理系统,通过有限的公理来证明所有的“真命题”。

欧式几何的五条公理是:

1、任意两个点可以通过一条直线连接。

2、任意线段能无限延长成一条直线。

3、给定任意线段,可以以其一个端点作为圆心,该线段作为半径作一个圆。

4、所有直角都相等。

5、若两条直线都与第三条直线相交,并且在同一边的内角之和小于两个直角和,则这两条直线在这一边必定相交。

第五条公理称为平行公理(平行公设),可以导出下述命题:

通过一个不在直线上的点,有且仅有一条不与该直线相交的直线。

非欧几里得几何是指不同于欧几里得几何学的几何体系,简称为非欧几何,一般是指罗巴切夫斯基几何(双曲几何)和黎曼的椭圆几何。它们与欧氏几何最主要的区别在于公理体系中采用了不同的平行定理。

罗巴切夫斯基几何的公理系统和欧几里得几何不同的地方仅仅是把欧式几何平行公理用“ 在平面内,从直线外一点,至少可以做两条直线和这条直线平行 ”来代替,其他公理基本相同。由于平行公理不同,经过演绎推理却引出了一连串和欧式几何内容不同的新的几何命题。

我们知道,罗氏几何除了一个平行公理之外采用了欧式几何的一切公理。因此,凡是不涉及到平行公理的几何命题,在欧式几何中如果是正确的,在罗氏几何中也同样是正确的。在欧式几何中,凡涉及到平行公理的命题,在罗氏几何中都不成立,他们都相应地含有新的意义。所以罗氏几何中的一些几何事实没有像欧式几何那样容易被接受。但是,数学家们经过研究,提出可以用我们习惯的欧式几何中的事实作一个直观“模型”来解释罗氏几何是正确的。

1868年,意大利数学家贝特拉米发表了一篇著名论文《非欧几何解释的尝试》,证明非欧几何可以在欧几里得空间的曲面(例如拟球曲面)上实现。这就是说,非欧几何命题可以“翻译”成相应的欧几里得几何命题,如果欧几里得几何没有矛盾,非欧几何也就自然没有矛盾。

欧氏几何与罗氏几何中关于结合公理、顺序公理、连续公理及合同公理都是相同的,只是平行公理不一样。欧式几何讲“过直线外一点有且只有一条直线与已知直线平行”。罗氏几何讲“ 过直线外一点至少存在两条直线和已知直线平行”。 那么是否存在这样的几何“过直线外一点,不能做直线和已知直线平行”?黎曼几何就回答了这个问题

黎曼几何是德国数学家黎曼创立的。他在1851年所作的一篇论文《论几何学作为基础的假设》中明确的提出另一种几何学的存在,开创了几何学的一片新的广阔领域。 黎曼几何中的一条基本规定是:在同一平面内任何两条直线都有公共点(交点) 。在黎曼几何学中不承认平行线的存在, 它的另一条公设讲:直线可以无限延长,但总的长度是有限的 。黎曼几何的模型是一个经过适当“改进”的球面。

近代黎曼几何在广义相对论里得到了重要的应用。在物理学家爱因斯坦的广义相对论中的空间几何就是黎曼几何。在广义相对论里,爱因斯坦放弃了关于时空均匀性的观念,他认为时空只是在充分小的空间里以一种近似性而均匀的,但是整个时空却是不均匀的。在物理学中的这种解释,恰恰与黎曼几何的观念是相似的。

欧式几何是仿射几何的子几何。欧式几何是研究正交变换群下图形不变性的几何学。仿射几何是研究仿射变换群下图形不变性的几何学。仿射变换是保持共线点、平行性和简比不变的变换。线段长度、角度不是仿射不变量。因此,仿射坐标系与欧式直角坐标系不同,直观上看,坐标轴的两个单位向量不一定互相垂直(即正交)而是线性无关,而且x轴和y轴的单位向量的长度也不一定一样。

欧氏几何

欧氏几何的建立

欧氏几何是欧几里德几何学的简称,其创始人是公元前三世纪的古希腊伟大数学家欧几里德。在他以前,古希腊人已经积累了大量的几何知识,并开始用逻辑推理的方法去证明一些几何命题的结论。欧几里德这位伟大的几何建筑师在前人准备的“木石砖瓦”材料的基础上,天才般地按照逻辑系统把几何命题整理起来,建成了一座巍峨的几何大厦,完成了数学史上的光辉著作《几何原本》。这本书的问世,标志着欧氏几何学的建立。这部科学著作是发行最广而且使用时间最长的书。后又被译成多种文字,共有二千多种版本。它的问世是整个数学发展史上意义极其深远的大事,也是整个人类文明史上的里程碑。两千多年来,这部著作在几何教学中一直占据着统治地位,至今其地位也没有被动摇,包括我国在内的许多国家仍以它为基础作为几何教材。

一座不朽的丰碑

欧几里德将早期许多没有联系和未予严谨证明的定理加以整理,写下《几何原本》一书,使几何学变成为一座建立在逻辑推理基础上的不朽丰碑。这部划时代的著作共分13卷,465个命题。其中有八卷讲述几何学,包含了现在中学所学的平面几何和立体几何的内容。但《几何原本》的意义却绝不限于其内容的重要,或者其对定理出色的证明。真正重要的是欧几里德在书中创造的一种被称为公理化的方法。

在证明几何命题时,每一个命题总是从再前一个命题推导出来的,而前一个命题又是从再前一个命题推导出来的。我们不能这样无限地推导下去,应有一些命题作为起点。这些作为论证起点,具有自明性并被公认下来的命题称为公理,如同学们所学的“两点确定一条直线”等即是。同样对于概念来讲也有些不加定义的原始概念,如点、线等。在一个数学理论系统中,我们尽可能少地先取原始概念和不加证明的若干公理,以此为出发点,利用纯逻辑推理的方法,把该系统建立成一个演绎系统,这样的方法就是公理化方法。欧几里德采用的正是这种方法。他先摆出公理、公设、定义,然后有条不紊地由简单到复杂地证明一系列命题。他以公理、公设、定义为要素,作为已知,先证明了第一个命题。然后又以此为基础,来证明第二个命题,如此下去,证明了大量的命题。其论证之精彩,逻辑之周密,结构之严谨,令人叹为观止。零散的数学理论被他成功地编织为一个从基本假定到最复杂结论的系统。因而在数学发展史上,欧几里德被认为是成功而系统地应用公理化方法的第一人,他的工作被公认为是最早用公理法建立起演绎的数学体系的典范。正是从这层意义上,欧几里德的《几何原本》对数学的发展起到了巨大而深远的影响,在数学发展史上树立了一座不朽的丰碑。

欧氏几何的完善

公理化方法已经几乎渗透于数学的每一个领域,对数学的发展产生了不可估量的影响,公理化结构已成为现代数学的主要特征。而作为完成公理化结构的最早典范的《几何原本》,用现代的标准来衡量,在逻辑的严谨性上还存在着不少缺点。如一个公理系统都有若干原始概念(或称不定义概念),如点、线、面就属于这一类。欧几里德对这些都做了定义,但定义本身含混不清。另外,其公理系统也不完备,许多证明不得不借助于直观来完成。此外,个别公理不是独立的,即可以由其他公理推出。这些缺陷直到1899年德国数学家希尔伯特的在其《几何基础》出版时得到了完善。在这部名著中,希尔伯特成功地建立了欧几里德几何的完整、严谨的公理体系,即所谓的希尔伯特公理体系。这一体系的建立使欧氏几何成为一个逻辑结构非常完善而严谨的几何体系。也标志着欧氏几何完善工作的终结。

欧式几何的意义

由于欧式几何具有鲜明的直观性和有着严密的逻辑演绎方法相结合的特点,在长期的实践中表明,它巳成为培养、提高青、少年逻辑思维能力的好教材。历史上不知有多少科学家从学习几何中得到益处,从而作出了伟大的贡献。

少年时代的牛顿在剑桥大学附近的夜店里买了一本《几何原本》,开始他认为这本书的内容没有超出常识范围,因而并没有认真地去读它,而对笛卡儿的“坐标几何”很感兴趣而专心攻读。后来,牛顿于1664年4月在参加特列台奖学金考试的时候遭到落选,当时的考官巴罗博士对他说:“因为你的几何基础知识太贫乏,无论怎样用功也是不行的。”这席谈话对牛顿的震动很大。于是,牛顿又重新把《几何原本》从头到尾地反复进行了深入钻研,为以后的科学工作打下了坚实的数学基础。

近代物理学的科学巨星爱因斯坦也是精通几何学,并且应用几何学的思想方法,开创自己研究工作的一位科学家。爱因斯坦在回忆自己曾走过的道路时,特别提到在十二岁的时候“几何学的这种明晰性和可靠性给我留下了一种难以形容的印象”。后来,几何学的思想方法对他的研究工作确实有很大的启示。他多次提出在物理学研究工作中也应当在逻辑上从少数几个所谓公理的基本假定开始。在狭义相对论中,爱因斯坦就是运用这种思想方法,把整个理论建立在两条公理上:相对原理和光速不变原理。

在几何学发展的历史中,欧几里得的《几何原本》起了重大的历史作用。这种作用归结到一点,就是提出了几何学的“根据”和它的逻辑结构的问题。在他写的《几何原本》中,就是用逻辑的链子由此及彼的展开全部几何学,这项工作,前人未曾作到。

但是,在人类认识的长河中,无论怎样高明的前辈和名家,都不可能把问题全部解决。由于历史条件的限制,欧几里得在《几何原本》中提出几何学的“根据”问题并没有得到彻底的解决,他的理论体系并不是完美无缺的。比如,对直线的定义实际上是用一个未知的定义来解释另一个未知的定义,这样的定义不可能在逻辑推理中起什么作用。又如,欧几里得在逻辑推理中使用了“连续”的概念,但是在《几何原本》中从未提到过这个概念。

古希腊大数学家欧几里德是与他的巨著——《几何原本》一起名垂千古的。这本书是世界上最著名、最完整而且流传最广的数学著作,也是欧几里德最有价值的一部著作。在《原本》里,欧几里德系统地总结了古代劳动人民和学者们在实践和思考中获得的几何知识,欧几里德把人们公认的一些事实列成定义和公理,以形式逻辑的方法,用这些定义和公理来研究各种几何图形的性质,从而建立了一套从公理、定义出发,论证命题得到定理得几何学论证方法,形成了一个严密的逻辑体系——几何学。而这本书,也就成了欧式几何的奠基之作。

两千多年来,《几何原本》一直是学习几何的主要教材。哥白尼、伽利略、笛卡尔、牛顿等许多伟大的学者都曾学习过《几何原本》,从中吸取了丰富的营养,从而作出了许多伟大的成就。

要说到几何,大多数人便会想到运用并流传了几千年的欧式几何,这是毋庸置疑的。欧式几何在我们的生活中运用太广泛了。从我们开始接触几何问题,和我们生活中所接触到的一些几何问题大部分都是欧式几何。欧式几何是几何学的一门分科。又称欧几里德几何。公元前3世纪,古希腊数学家欧几里德把人们公认的一些几何知识作为定义和公理,在此基础上研究图形的性质,推导出一系列定理,组成演绎体系,写出《几何原本》,形成了欧氏几何。欧式几何的传统描述是一个公理系统,通过有限的公理来证明所有的“真命题”。欧式几何共有五条公理,其中前四个都是可以通过各种方法来证明的,并被众人接受。唯有公理5使许多人不能被理解所接受 。于是由此问题,我们又有了一个巨大的发现,也是人类历史上的重大转变。那就是非欧几何的出现。欧式几何所能解决的只限于平面,从而伟大的第五公理就这样在非欧几何中得证。

1826年2月23日,罗巴切夫斯基于喀山大学物理数学系学术会议上,宣读了他的第一篇关于非欧几何的论文:《几何学原理及平行线定理严格证明的摘要》。这篇首创性论文的问世,标志着非欧几何的诞生。

它不仅仅是解决了人们长达两千多年的关于“平行线理论”的讨论。非欧几何更是人类认识史上一个富有创造性的伟大成果,它的创立,不仅带来了近百年来数学的巨大进步,而且对现代物理学、天文学以及人类时空观念的变革都产生了深远的影响。

纯手打,望采纳,谢谢!^_^

1过相异两点,能作且只能作一直线(直线公理)。

2线段(有限直线)可以任意地延长。

3以任一点为圆心、任意长为半径,可作一圆(圆公理)。

4凡是直角都相等(角公理)。

5两直线被第三条直线所截,如果同侧两内角和小於两个直角, 则两直线作延长时在此侧会相交。

上述前三条公理是尺规作图公理,用来定直线与圆。在纸面上用尺规划出的任何直线与圆,按定义而言,都不是「真正」数学上的直线与圆。然而,欧氏似乎是说:我们可以用尺规作出近似的图形,以帮助我们想像真正的图形,再配合正确的推理就够了。

第四条公理比较不一样,它好像是一个未证明的定理。事实上,它宣称著:直角的不变性或空间的齐性 (the homogeneity of space)。它规范了直角,为第五公理铺路。

第五公理又叫做平行公理 (the parallel axiom),因为它等价於:

在一平面内,过直线外一点,可作且只可作一直线跟此直线平行。

五条一般公理(a,b,c,d 皆为正数)

1跟同一个量相等的两个量相等;即若 a=c 且 b=c,则 a = b(等量代换公理)。

2等量加等量,其和相等;即若 a=b 且 c=d,则 a+c = b+d(等量加法公理)。

3等量减等量,其差相等;即若 a=b 且 c=d,则 a-c = b-d(等量减法公理)。

4完全叠合的两个图形是全等的(移形叠合公理)。

5全量大於分量,即 a+b>a(全量大於分量公理)。

23 个定义

事实上,欧氏《几何原本》开宗明义是由23个定义出发,接著才是十条几何公理与一般公理。在23个定义中,首六个特别值得提出来讨论:

1点是没有部分的(A point is that which has no part)。

换言之,点只占有位置而没有大小,即点的长度 d=0。这是修正毕氏学派「d>c」的失败而得到的。然而,在谈论线段的长度时,欧氏直接诉诸於常识,根本不用这个定义,避开了「由没有长度的点累积成有长度的线段」之困局。许多人抱怨「点是没有部分的」这句话难於理解,这是因为对毕氏学派的研究纲领缺乏了解的缘故。

2线段只有长度而没有宽度(A line is breadless length)。

3线的极端是点(The extremities of a line are points)

这表示线段是由点组成的并且线段只有长度而没有面积。

4直线是其组成点,均匀地直放著的线 (A straight line is a line which lies evenly with the points on itself)

5面只有长度与宽度(A suface is that which has length and breath only)

6面的极端是线(The extremities of a surface are lines)。

4~6这三个定义表示,面是由线所组成的,没有厚度。因此,面只有面积,而没有体积。

其余的定义,请见参考资料14。

利用23个定义、10条几何公理於一般公理,我们就可以推导出:等腰三角形的正逆定理,三角形三内角和定理。进一步还可以推导出泰利斯 (Thales) 基本定理,用同一种正多边形铺地板只有三种样式,正多面体恰好有五种。事实上,这10条公理就是欧式几何的总源头,已经可以推导出整个欧式几何了。

总之,欧式吸取毕氏学派失败的经验,重新「分析」与「整理」既有的几何知识,另辟路径,改几何本身来建立几何(不用毕式经验式的原子论,即使优多诸斯已补全了毕氏学派的漏洞)并且采用公理化的手法,逐本探源,最后终於找到五条几何公理与五条一般公理是欧氏的创造与发现过程。接著是「综合」,利用10条公理配合优多诸斯检定法则、反证法(归谬法)与尺规作图,推导出所有的几何定理,这是逻辑的证明过程。

因此,欧氏几何的建立,采用了分析与综合的方法。这不止是ㄉ单独一个命题的前提与结论之间的连结,而是所有几何命题的连结成逻辑网路,即整个几何领域的全面之分析与综合。

欧氏视10条公理为「显明」的真理,从而所有几何定理也都是真理。换言之,由源头输入真值 (truth values),那麼沿著逻辑网路,真值就流布於整个欧氏演绎系统。欧氏以「朝生暮死」之躯,竟然能作出永恒之事!美国女诗人米雷(ESV Millay, 1892~1950)说:

只有欧氏见过赤裸之美 (Euclid alone has looked at beauty bare)。

欧氏的生平不详,只知他是亚历山卓 (Alexandria) 大学(世界上第一所大学)的数学教授,约纪元前300年编辑完成《几何原本》。另外,欧氏流传有两个故事,其一是,有一位学生跟欧氏学习几何,问道:「学习几何可以得到什麼利益?」欧氏立刻令仆人拿三个钱币打发这位学生走路,因为他想从追求真理中得到利益,其二是,托勒密 (Ptolemy) 国王觉得几何很难,於是问欧氏:「学习几何有没有皇家大道(即捷径)?」欧氏回答说:「通往几何并没有皇家大道。」(There is no royal road to geometry)

欧氏建立几何的动机

古希腊人对於经验几何知识的锤练,首由泰利斯发端,接著是毕氏学派提出「直观性常识的几何原子论」,假设点的长度大於0,从而任何两线段皆可共度。由此尝试给几何建立基础:后来,终因不可共度线段的发现而破产。这让古希腊哲学家监决地走向「知识必须再经过逻辑论证」的道路。数学史家 Szabo(详见参考资料3)因而主张:不可共度线段的发现,是促使希腊几何走上演绎形式的关键,其中归谬法扮演著催生的作用,终於导致欧氏几何的诞生。

此外,千百年来对欧氏建立几何的动机,作了许多猜测:

(i)对毕氏学派失败的回应。

(ii)为了堵住怀疑派 (Sceptics) 与诡辩派 (Sophists) 哲学家之口,因为他们利用「无穷回溯法」(the infinite regress method)而论证说:「为何知道甲?因为乙;为何知道乙?因为丙;……没完没了,所以我们无法知道甲。」结论是:「我们一无所知,或至少我们无法确定我们知道什麼」。面对这样的挑战,最好的回应方式是去建立让人信服的知识殿堂,欧氏办到了。

(iii)为了安置柏拉图的五种正多面体,正多面体是柏拉图的字宙论之基石。《几何原本》的最后一册(即第13册)就是以建构这五种正多面体、研究它们的性质为主。欧氏以它们作为总结。

(iv)为了体现柏拉图与亚里斯多德对科学与数学的看法,因为欧氏是柏拉图学派的人。他为真理而真理,用几何展示逻辑推理的威力,由第一原理(公理)导出所有几何知识。

总而言之,吉希腊哲学家对於存有之谜 (the enigma of being)、流变之谜 (the enigma of becoming) 以及知识之谜感到十分惊奇,一心要找到「构成物质世界的要素」、澄清变化与运动现象、追问什麼是真理。对这三个万古常新的论题,经过长期而热烈的讨论、争辨,提出各式各样针锋相对的理论与学说,产生了非常丰富的科学的、数学的、哲学的思潮,而成就了所谓的「希腊奇迹」。欧氏几何是这个奇迹中所开出的一朵不朽之花。

我是转的,希望对你有帮助

勾股定理的公式为a2+b2=c2,在平面上的一个直角三角形中,两个直角边边长的平方加起来等于斜边长的平方。如果设直角三角形的两条直角边长度分别是a和b,斜边长度是c,那么则可以用勾股定理来表达。

 勾股定理,是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。

 勾股定理的证明是论证几何的发端,这个定理是历史上第一个把数与形联系起来的定理,即勾股定理是第一个把几何与代数联系起来的定理,是历史上第—个给出了完全解答的不定方程,它引出了费马大定理。

欢迎分享,转载请注明来源:表白网

原文地址:https://h5.hunlipic.com/biaobai/4039179.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2024-04-11
下一篇2024-04-11

发表评论

登录后才能评论

评论列表(0条)

    保存