1多边形内角和公式是180°(n-2)所以减去一个角后该图形是九边形,所以该图形为八边形。
2n边形是正多边形吗?
3因为角a+角b=160°所以∠A=160°-∠B,∵∠A+∠B+∠C+∠D=360°∴160°-∠B+∠B+4/3∠B+2∠B=360°∴∠B=60°∴∠A=100°
用代数的方法研究几何的思想,在继出现解析几何之后,又发展为几何学的另一个分支,这就是代数几何。
代数几何学研究的对象是平面的代数曲线、空间的代数曲线和代数曲面。
代数几何学的兴起,主要是源于求解一般的多项式方程组,开展了由这种方程组的解答所构成的空间,也就是所谓代数簇的研究。
解析几何学的出发点是引进了坐标系来表示点的位置,同样,对于任何一种代数簇也可以引进坐标,因此,坐标法就成为研究代数几何学的一个有力的工具。
代数几何的研究是从19世纪上半叶关于三次或更高次的平面曲线的研究开始的。
例如,阿贝尔在关于椭圆积分的研究中,发现了椭圆函数的双周期性,从而奠定了椭圆曲线理论基础。
黎曼1857年引入并发展了代数函数论,从而使代数曲线的研究获得了一个关键性的突破。
黎曼把他的函数定义在复数平面的某种多层复迭平面上,从而引入了所谓黎曼曲面的概念。
运用这个概念,黎曼定义了代数曲线的一个最重要的数值不变量:亏格。
这也是代数几何历史上出现的第一个绝对不变量。
并首次考虑了亏格g 相同的所有黎曼曲面的双有理等价类的参量簇问题,并且发现这个参量簇的维数应该是3g-3,虽然黎曼没有能严格证明它的存在性。
在黎曼之后,德国数学家诺特等人用几何方法获得了代数曲线的许多深刻的性质。
诺特还对代数曲面的性质进行了研究。
他的成果给以后意大利学派的工作建立了基础。
从19世纪末开始,出现了以卡斯特尔诺沃、恩里奎斯和塞维里为代表的意大利学派以及以庞加莱、皮卡和莱夫谢茨为代表的法国学派。
他们对复数域上的低维代数簇的分类作了许多非常重要的工作,特别是建立了被认为是代数几何中最漂亮的理论之一的代数曲面分类理论。
但是由于早期的代数几何研究缺乏一个严格的理论基础,这些工作中存在不少漏洞和错误,其中个别漏洞直到目前还没有得到弥补。
20世纪以来代数几何最重要的进展之一是它在最一般情形下的理论基础的建立。
20世纪30年代,扎里斯基和范·德·瓦尔登等首先在代数几何研究中引进了交换代数的方法。
在此基础上,韦伊在40年代利用抽象代数的方法建立了抽象域上的代数几何理论,然后20世纪50年代中期,法国数学家塞尔把代数簇的理论建立在层的概念上,并建立了凝聚层的上同调理论,这个为格罗腾迪克随后建立概型理论奠定了基础,他在讨论班的讲义《代数几何基础》(EGA,SGA,FGA)成为该领域的圣经。
概型理论的建立使代数几何的研究进入了一个全新的阶段。
概型的概念是代数簇的推广,它允许点的坐标在任意有单位元的交换环中选取,并允许结构层中存在幂零元。
近年来,人们在现代粒子物理的最新的超弦理论中已广泛应用代数几何工具,这预示着抽象的代数几何学将对现代物理学的发展发挥重要的作用。
代数几何沿着Weil的道路进行着它的抽象化征程,其间,Kodaira(小平邦彦)用调和积分理论将Riemann-Roch定理由曲线推广到曲面,德国数学家Hirzebruch不久又用sheaf的语言和拓扑成果把它推广到高维复流形上,J-PSerre在sheaf的基础上定义了一般的代数簇,使得代数簇成为具有Zariski拓扑的拓扑空间,从而在代数几何里引入了日后起重要作用的上同调理论,不过,Serre在代数几何里最重要的贡献,我觉得是吸引Grothendieck到代数几何里来。
自从Grothendieck介入代数几何后,代数几何的面貌完全改观,尽管在代数几何里王者辈出,但是,大家心目中的教皇只有一个,那就是伟大的Grothendieck。Grothendieck是法国数学家,Bourbaki成员,1928年生于德国柏林,由于第二次世界大战,致使他没有受到正规的大学阶段的数学训练。 1953年以前主要致力于泛函分析,创造了核空间,拓扑张量积等概念,这些概念现于泛函分析里十分基本和重要,一系列深刻的泛函分析工作就足以使他跻身于数学界的巨人行列,但是,他的影响更为深远的工作是后来在代数几何上划时代的贡献,代数几何学经过Van Der Waerden,Zariski, Weil和Serre等人的推广,代数簇已经完全抽象化了,但是,代数簇最彻底的推广则是Grothendieck在20世纪50年代末做出的,这就是他的抽象概型理论和强有力的上同调理论。仿射概型(Affine Schemes)是一个局部戴环空间(X,Ox),而且它同构于(作为局部戴环空间)某个环的谱。概型是局部戴环空间,在它中每点有一个开邻域U使得拓扑空间U和限制层Ox|U是一个Affine Schemes,X叫做概型(X,Ox)的承载拓扑空间,Ox叫做它的结构层。例如,若K是域,Spec K则是一个Affine Schemes,它的拓扑空间由一点组成,它的结构层由域K组成。Grothendick为了给它的这座大厦打下坚实的基础,和他的老师 Dieudonne合作写了一部四卷本的巨著,总共有7本书,这就是前面Serre提到过的”更加难懂的《代数几何原理》“,(《Ele\’ments de Ge\’ome\’trie Alge\’brique 》简称EGA,道上的朋友只要听到EGA,就知道你要说什么了),这是世界上概型和上同调最权威的参考文献,Dieudonne评价说:” Clearly, the theory of schemes includes ,by definition, all of commutative algebra as well as all of the theory of the varieties of Serre。“Scheme把代数几何和代数数域的算术统一到一个共同的语言之下,使得在代数数论的研究中可以应用代数几何中的大量概念和思想以及技巧。
开始的时候,人们对Grothendieck这套庞大的抽象体系究竟有什么用感到非常的茫然,但是,在Deligne使用Grothendieck的理论证明了高维Weil猜想后(这是Weil的另外一个猜想,是有限域上高维代数簇的Riemann猜想的模拟),情形就发生了剧烈的变化,到了70年代末,这套概型语言和上同调机制已经被许多同行所熟悉和掌握,并已成为研究现代代数几何学与数论(主要是指算术几何)的通用语言和基本工具。1983年 Faltings(法尔斯廷)证明Mordell猜想也使用了这套机制,由此可见Grothendieck所建立的这套概型理论是多么的重要。1973年Deligne 证明的高维Weil猜想是特征P(有限域上)的算术几何的巨大进步,10年后Faltings所证明的Modell猜想则是特征0(整体域上)的算术几何的巨大突破,这里又一次说明了能解决具体问题的抽象才是好的抽象,才是有意义的,为抽象而抽象的工作最终将被人们遗弃。Grothendieck的另一个目标是致力于发展各种上同调理论,如L—adic上同调和etale上同调,以致最后他走向了”终极上同调不变量“,即动机理论(motive theory),使得所有其他的上同调理论都是它的一种表示或者化身(即它的具体化),这个理论随着1970年 Grothendieck的”金盆洗手“,也成了一个美丽的Grothendieck之梦。不过,已经由它产生了大量好的数学,如1970年Deligne和 RLanglands猜想motives和自守表示之间的精确关系,AWiles的FLT(费马大定理)的证明,本质上就是证明了这个猜想在椭圆曲线所产生的2维 motievs的特殊情况,这个猜想使得motives和现今著名的Langlands纲领联系起来了,而且2002年菲奖得主Voevodsky的工作也与motives有关,Grothendieck的梦想或许有一天又会成为一个伟大的理论。
1 F坐标为(0,3∕x) B点坐标为(0,3)然后求出BF长度的代数式,于OA长3∕x相比,正好约去,为定值。
2 过P向y轴作垂线,交与H,然后证三角形ABO 与三角形BPH全等 即P点坐标为(3,3+3∕x)F点坐标为(0,3∕x)于是就用勾股定理算出三角形PFH的斜边长PF为定值。(即函数中的几何要想到用代数方法做)
设对角线长度分别为a,b
因为菱形周长2p。所以,菱形边长为p/2
因为菱形对角线互相垂直,所以(a/2)^2+(b/2)^2=(p/2)^2
所以a^2+b^2=p^2
又因为a+b=q,所以(a+b)^2=q^2
所以,a^2+b^2+2ab=q^2
所以ab=(q^2-p^2)/2
因为菱形的面积公式有对角线乘积的一半,
所以面积为ab/2
即(q^2-p^2)/4
背景
凯莱和克莱因的工作连接了非欧几何、黎曼微分几何和射影几何,代数方法广泛应用于射影几何后,人们开始寻求几何图形有哪些性质与坐标表示无关,这个问题也促成了对代数不变量的研究。
几何图形射影性质就是图形在线性变换下不变的那些性质,有时也考虑高次变换,研究在这些变换下曲线和曲面有哪些性质不变。不久数学家就从线性变换转到高次变换,称之为双有理变换:因为这些变换的代数表达式是坐标的有理函数,其逆变换也是坐标的有理函数。数学家集中研究双有理变换,是因为黎曼曾用它们研究阿贝尔积分和阿贝尔函数,研究曲线双有理变换的第一个重要进展就是由黎曼的工作引发的。这两个主题是19世纪后半叶代数几何的主要内容。
代数几何原先是指从费马到笛卡尔时代起所有把代数用于几何的研究工作,在19世纪后半叶把代数不变量和双有理变换的研究称为代数几何,到20世纪,代数几何指的就是后一领域。
先打一点代数不变量
通过坐标表示来确定要表示、研究的图形的几何性质,需要识别在坐标变换下保持不变的那些代数表达式。此外,用线性变换把一个图形变到另一个的射影变换使图形某些性质保持不变,代数不变量代表这些不变的几何性质。
代数不变量的问题产生于数论,特别在研究二元二次型 在x与y用线性变换T变换时是如何变换的,T即x=αx'+βy',y=γx'+δy',其中αδ-βγ=r,得到 ,在数论中系数都是整数,且r=1,但一般而言f的判别式D满足关系式 。
射影几何的线性变换更为一般,因为二次型和变换系数不限于整数,代数不变量一词是指在这更一般的线性变换下产生的不变量,区别于数论中的模不变量和黎曼几何的微分不变量。
代数几何是现代数学的一个重要分支学科,代数几何研究一般代数曲线与代数曲面的几何性质。
代数几何的基本研究对象是在任意维数的空间中,由若干个代数方程的公共零点所构成的集合的几何特性。这样的集合通常叫做代数簇,而这些方程叫做这个代数簇的定义方程组,代数簇是由空间坐标的一个或多个代数方程所确定的点的轨迹。
代数几何学的兴起,主要是源于求解一般的多项式方程组,开展了由这种方程组的解答所构成的空间,也就是所谓代数簇的研究。解析几何学的出发点是引进了坐标系来表示点的位置,同样,对于任何一种代数簇也可以引进坐标,因此,坐标法就成为研究代数几何学的一个有力的工具。
欢迎分享,转载请注明来源:表白网
评论列表(0条)