单向扫看法:在第一个例子中,我们注意看一下第2宫。
我们知道,每个宫内必须包含数字9,第1宫以及第3宫中都包含数字9,并且第1宫的9位于第3行。
第3宫的9位于第2行,这也就意味着第2宫的9不能在第2行和第3行,所有第2宫的9只能放置在第2宫第1行的空格内。
2双向扫看法:同样的技巧也可以扩展到相互垂直的行与列中。让我们想一下第3宫中1应该放在哪里。在这个例子中,第1行以及第2行已经有1了,那么第3宫中只有底部的俩个空格可以填1。不过,方格g4已经有1了,所有第g列不能再有1。
所以i3是该宫唯一符合条件填上数字1的地方。
3寻找候选法:通常地,一个方格只能有一个数字的可能性,因为剩下的其他8个数字都已经被相关的行列宫所排除了。我们看一下下面例子中b4这个方格。b4所在的宫中已经存在了数字3,4,7,8,1和6位于同一行,5和9位于同一列,排除上述所有数字,b4只能填上2。
4数字排除法:排除法是一个相对繁杂的寻找数字的方法。我们可以从c8中的1间接推出e7和e9必须包含数字1,不管这个1在哪个方格,我们可以确认的是,第e列的数字1肯定在第8宫内,所以第2宫内中间这一列就不可能存在数字1。因此,第2宫的数字一必须填在d2处。
1、直观法:不做任何记号,直接从数独的盘势观察线索,推论答案的方法。
2、候选数法:删减等位群格位已出现的数字,将剩余可填数字填入空格做为解题线索的参考,可填数字称为候选数(Candidates,或称备选数)。
3、直观法和候选数法只是填制时候是否有注记的区别,依照个人习惯而定,并非鉴定题目难度或技巧难度的标准,无论是难题或是简单题都可上述方法填制,一般程序解题以候选数法较多。
二、数独基本由三个连续宫组成大行列,分大行及大列组成。
第一大行:由第一宫、第二宫、第三宫组成。
第二大行:由第四宫、第五宫、第六宫组成。
第三大行:由第七宫、第八宫、第九宫组成。
第一大列:由第一宫、第四宫、第七宫组成。
第二大列:由第二宫、第五宫、第八宫组成。
第三大列:由第三宫、第六宫、第九宫组成。
扩展资料:
数独技巧:
1、基础摒除法
基础摒除法就是利用1~9的数字在每一行、每一列、每一个九宫格都只能出现一次的规则进行解题的方法。基础摒除法可以分为行摒除、列摒除、九宫格摒除。
2、唯一解法
当某行已填数字的宫格达到8个,那么该行剩余zhidao宫格能填的数字就只剩下那个还没出现过的数字了。成为行唯一解。
3、唯余解法
唯余解法就是某宫格可以添入的数已经排除了8个,那么这个宫格的数字就只能添入那个没有出现的数字
数独的规则
在空格内填入数字1-9,使得每行、每列和每个宫内数字都不重复。
注意:数独题目满足条件的答案是唯一的。
数独的元素
数独的元素主要包括行、列和宫。这三者划分出数独有三种不同形态的区域,而数独规则就是要求在这些区域内出现的数字都为1~9。
元素坐标图:
行:数独盘面内横向一组九格的区域,用字母表示其位置;
列:数独盘面内纵向一组九格的区域,用数字表示其位置;
宫:数独盘面内3×3格被粗线划分的区域,用中文数字表示其位置。
格的坐标:利用表示行位置的字母和表示列位置的数字定位数独盘面内每个格子的具体位置,如A3格,F8格等。
数独技巧
1 宫内排除法
排除法就是利用数独中行、列和宫内不能填入相同数字的规则,利用已出现的数字对同行、同列和同宫内其他格进行排斥相同数字的方法。
宫内排除法就是将一个宫作为目标,用某个数字对它进行排除,最终得到这个宫内只有一格出现该数字的方法。技巧示意图:
宫内排除法
如上图所示,A2、B4和F7三格内的1都对三宫进行排除,这时三宫内只有C9格可以填入1,本图例就是对三宫运用的排除法。
2 行列排除法
行列排除法就是将一行或一列作为目标,用某个数字对它进行排除,最终得到这个行列内只有一格出现该数字的方法。技巧示意图:
行列排除法
如上图所示,D2和B8两格内的6都对F行进行排除,这时F行内只有F5格可以填入6,本图例就是对F行运用的排除法。
3 区块排除法
区块排除法就是先利用宫内排除法在某个宫内形成一个区块,利用该区块的排除再结合其他已知数共同确定某宫内只有一格出现该数字的方法。技巧示意图:
区块排除法
如上图所示,B4格的7对五宫进行排除,在五宫内形成了一个含数字7的区块。无论该区块中F5格是7还是F6格是7,都可以对F行其他格的7进行排除。再结合H7格的7同时对六宫进行排除,得到六宫内只有D8格可以填7。
4 宫内数对占位法
数对占位法指的是在某个区域中使得某两数只能出现在某两格内,这时虽然无法判断这两个数字的位置,但可以利用两数的占位排斥掉其他数字出现在这两格,再结合排除法就可以间接填出下个数字。技巧示意图:
宫内数对占位法
如图所示,利用D行和7列中的已知数3、5对六宫排除,得到在E8和F8两格形成了一个数对,该数对排斥其他数字填入这两格。这时再利用D4和F1两格中的7对六宫进行排除,得到六宫中只有E7格可以填入7。
5 唯余解法
唯余法就是利用数独中每格内都只有9种数字的可能性,如果某格中有8种数字都不能填,只能填入唯一未出现数字的方法。技巧示意图:
唯余解法
如上图所示,C行有已知数1、2;三宫有已知数3、4、5;9列有已知数5、6、7、8,上述8种不同的数字,同时对C9格产生影响,使得C9格不能填入这8种数字,得到C9格内只能填入数字9,否则就出现同行、同列或同宫中数字相同的情况。
6 行列区块法
行列区块法指的是利用行列排除,在某行或列内制造出一个区块,利用该区块对该区块所在宫的其他格进行删除的方法。技巧示意图:
行列区块法
如上图所示,A9和I2两格的1对5列进行排除,使得5列的1只能在D5、E5和F5三格之中,这时在5列内制造了一个含5的区块,该区块同时也存在于五宫中,所以可以排除掉五宫其它格中的1。这时再结合D行和6列的已知数字,可以唯余得到D6格内只能填入9。
7 行列内数对占位法
数对占位法,在上面的宫内数对占位法中,我们已经学过数对占位法,这里讲的是数对出现行列里的情况,这时的观察难度会大大增加,本技巧也属于难度较大的技巧之一。技巧示意图:
行列内数对占位法
如图所示,利用四宫和8列的已知数2、7,同时对F行进行排除,在F行得到数字2、7只能填在F6和F9两格内,这时在F行的这两格内形成2、7数对。再观察A7和H8两格的8对六宫的排除,六宫内只有E9格内可以填入8。
8 数组占位法
数组占位法是在数对占位法基础上,由两数占两格变为三数占三格的方法。技巧使用理论与数对占位法是相同的,但观察难度提升了很多。技巧示意图:
数组占位法
如图所示,利用E行和5列内的已知数2、4、6同时对五宫进行排除,得到在五宫内数字2、4、6只能填在D4、F4和F6三格内。由于五宫内数组2、4、6的占位,再观察B6和I5两格内的7对五宫进行排除,得到五宫内只有E4格可以填入7。上例是在宫内形成的数组占位,同理数组也可以在行列中出现。
9.显性数对
显性数对是指利用对格内数字的唯余,使某两格内都只剩余相同的两个候选数,恰好这两格又在同行、同列或同宫的情况。这种情况形成的数对称为显性数对,或唯余数对。技巧示意图:
显性数对
如图所示,B6和F6两格由于被周围数字的影响,这两格内都只剩余候选数5、6,恰好这两格又都处于6列内。这时,6列的5和6只能在这两格内并结合G1格的5对八宫进行排除,得到八宫的5只能填在I4格内。
10 显性数组
显性数组是在显性数对基础上进行提高的技巧。指利用对格内数字的唯余,使某三格内都只剩余相同的三个候选数,恰好这三格又在同行、同列或同宫的情况。技巧示意图:
显性数组
如图所示,E3、E7和E9三格由于被周围数字的影响,这三格内都只剩余候选数4、5、9,恰好这三格又都处于E行内。并结合B4和H6格的4对五宫进行排除,得到五宫的4只能填在F5格内。
这是数独入门的基本技巧。
欢迎分享,转载请注明来源:表白网
评论列表(0条)