如下:
方差公式:S^2=〈(M-x1)^2+(M-x2)^2+(M-x3)^2+…+(M-xn)^2〉╱n。
平均数:M=(x1+x2+x3+…+xn)/n (n表示这组数据个数,x1、x2、x3……xn表示这组数据具体数值)。
期望的公式:E=X1P1+X2P2+X3P3++XnPn。
高中数学期望与方差公式应用:
1)随机炒股。
随机炒股也就是闭着眼睛在股市中挑一只股票,并且假设止损和止盈线都为10%,因为是随机选股,那么胜率=败率,由于印花税、佣金和手续费的存在,胜率=败率<50%,最后的数学期望一定为负,可见随机炒股,长期的后果,必输无疑。
2)趋势炒股。
趋势炒股是建立在惯性理论上的,胜率跟经验有很大关系,基本上平均胜率可以假定为60%,则败率为40%,一般趋势投资者本着赚点就跑,亏了套死不卖的原则,如涨10%止盈,跌50%止损,数学期望为EP=60%10%-40%50%=-014,必输无疑。
一.方差的概念与计算公式
例1
两人的5次测验成绩如下:
x:
50,100,100,60,50
e(x
)=72;
y:
73,
70,
75,72,70
e(y
)=72。
平均成绩相同,但x
不稳定,对平均值的偏离大。
方差描述随机变量对于数学期望的偏离程度。
单个偏离是
消除符号影响
方差即偏离平方的均值,记为d(x
):
直接计算公式分离散型和连续型,具体为:
这里
是一个数。推导另一种计算公式
得到:“方差等于平方的均值减去均值的平方”,即
,
其中
分别为离散型和连续型计算公式。
称为标准差或均方差,方差描述波动程度。
二.方差的性质
1.设c为常数,则d(c)
=
0(常数无波动);
2.
d(cx
)=c2
d(x
)
(常数平方提取);
证:
特别地
d(-x
)
=
d(x
),
d(-2x
)
=
4d(x
)(方差无负值)
3.若x
、y
相互独立,则
证:记
则
前面两项恰为
d(x
)和d(y
),第三项展开后为
当x、y
相互独立时,
,
故第三项为零。
特别地
独立前提的逐项求和,可推广到有限项。
三.常用分布的方差
1.两点分布
2.二项分布
x
~
b
(
n,
p
)
引入随机变量
xi
(第i次试验中a
出现的次数,服从两点分布)
,
3.泊松分布(推导略)
4.均匀分布
另一计算过程为
5.指数分布(推导略)
6.正态分布(推导略)
~
正态分布的后一参数反映它与均值
的偏离程度,即波动程度(随机波动),这与图形的特征是相符的。
例2
求上节例2的方差。
解
根据上节例2给出的分布律,计算得到
工人乙废品数少,波动也小,稳定性好。
表白数学公式有:
我每天带给你的惊喜和希望,就像无穷集合里的每个元素,虽然取之不尽,却又各不一样。
不论我们前面是怎样的随机变量,不论未来有多大的方差,相信波谷过了,波峰还会远吗?
零向量可以有很多方向,却只有一个长度,就像我,可以有很多朋友,却只有一个你,值得我来守护。
我对你的感情,就像以自然对数e为底的指数函数,不论经过多少求导的风雨,依然不改本色,真情永驻。
如果有一天我们分居异面直线的两头,那我一定穿越时空的阻隔,划条公垂线向你冲来,一刻也不愿逗留。
我是1,你是0。我们相加是我,我们相乘是你。
我们的心就像一个圆,因为它的离心率永远是零。
等量代换与辅助线,在你我之间蔓延,解其实很简单,有且只有爱。
我们就是抛物线,你是焦点,我是准线,你想我有多深,我念你便有多真。
如果我的心是x轴,那你就是开口向上、Δ为负的抛物线,永远都在我的心上。
有了你,我的世界才有无穷大。因为任何实数,都无法表达,我对你深深的爱。
方差是数学统计学范畴的重要概念,下面小编就带领大家盘点一下方差的概念以及方差的计算公式,希望对大家有所帮助。
方差的定义和公式:设一组数据x1,x2,x3……xn中,各组数据与它们的平均数x的差的平方分别是(x1-x)2,(x2-x)2……(xn-x)2,那么就可以用他们的平均数对其进行衡量,公式为
该公式主要用来衡量这组数据的波动大小,并把它叫做这组数据的方差。为了简便我们也可以将其记做
(其中x为该组数据的平均值)
如果一组数据的方差越小,那么就证明该组数据的稳定性较高。
性质:
1、设C为常数,则D(C) = 0(常数无波动);
2、D(CX )=C2D(X ) (常数平方提取,C为常数,X为随机变量);
证:特别地 D(-X ) = D(X ), D(-2X ) = 4D(X )(方差无负值)
3、若X 、Y 相互独立,则,证:记
前面两项恰为 D(X )和D(Y ),第三项展开后为
当X、Y 相互独立时,故第三项为零。特别地独立前提的逐项求和,可推广到有限项。
方差公式:
标准方差公式(1):
标准方差公式(2):
例如: 两人的5次测验成绩如下:X: 50,100,100,60,50,平均值E(X)=72;Y:73, 70,75,72,70 平均值E(Y)=72。
平均成绩相同,但X 不稳定,对平均值的偏离大。方差描述随机变量对于数学期望的偏离程度。单个偏离是消除符号影响方差即偏离平方的均值,记为E(X):直接计算公式分离散型和连续型。
推导另一种计算公式得到:“方差等于各个数据与其算术平均数的离差平方和的平均数”。其中,分别为离散型和连续型计算公式。称为标准差或均方差,方差描述波动程度。
扩展资料:
性质:
1、设C为常数,则D(C) = 0(常数无波动);
2、D(CX )=C2D(X ) (常数平方提取,C为常数,X为随机变量);
证:特别地 D(-X ) = D(X ), D(-2X ) = 4D(X )(方差无负值)
3、若X 、Y 相互独立,则,证:记
前面两项恰为 D(X )和D(Y ),第三项展开后为
当X、Y 相互独立时,故第三项为零。特别地独立前提的逐项求和,可推广到有限项。
有n个数,先求平均值Ex,则方差var(n)=[(x1-Ex)^2+(x2-Ex)^2+……+(xn-EX)^2]/n。
“方差”(variance)这一词语率先由罗纳德·费雪(Ronald Fisher)在其论文《The Correlation Between Relatives on the Supposition of Mendelian Inheritance》中提出。
方差不仅仅表达了样本偏离均值的程度,更是揭示了样本内部彼此波动的程度,也可以理解为方差代表了样本彼此波动的期望。当然,这个结论是在二阶统计矩下成立。
扩展资料:
相关术语:平方差
一、常见错误:平方差公式中常见错误:(注意)
1、学生难于跳出原有的定式思维,如典型错误;(错因:在公式的基础上类推,随意“创造”)
2、混淆公式;
3、运算结果中符号错误;
4、变式应用难以掌握。
二、平方差公式注意事项
1、公式的左边是个两项式的积,有一项是完全相同的。
2、右边的结果是乘式中两项的平方差,相同项的平方减去相反项的平方。
3、公式中的a,b 可以是具体的数,也可以是单项式或多项式。
-方差
-方差计算公式
-平方差公式
欢迎分享,转载请注明来源:表白网
评论列表(0条)