球表面积的公式

球表面积的公式,第1张

球表面积的公式是S=4πR²。

球是以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的旋转体,也叫做球体。球的表面是一个曲面,这个曲面就叫做球面,球的中心叫做球心。连接球心和球面上任意一点的线段叫做球的半径。连接球面上两点并且经过球心的线段叫做球的直径。

球的体积公式

1、球体体积公式是=(4/3)πr^3,一个半圆绕直径所在直线旋转一周所成的空间几何体叫做球体,简称球,半圆的半径即是球的半径,球体有且只有一个连续曲面的立体图形。球的体积公式推导过程:欲证v=4/3×兀r^3,可证1/2v-2/3×πr3。做一个半球h=r,做一个圆柱h=r。柱-锥=π×r^3-π×r^3/3=2/3π×r^3。

2、若猜想成立,则柱-锥=半球。则夹在两个平行平面之间的两个立体图形,被平行于这两个平面的任意平面所截,如果所得的两个截面面积相等,那么,这两个立体图形的体积相等。若猜想成立,两个平面:S1(圆)=S2(环)。

半径是R的圆球的体积计算公式是::V=4πR /3

半径是R的圆球的面积公式:S=4πR^2

球体性质:

1、球心和截面圆心的连线垂直于截面。

2、球心到截面的距离d与球的半径R及截面的半径r有下面的关系:r^2=R^2-d^2

3、球面被经过球心的平面截得的圆叫做大圆,被不经过球心的截面截得的圆叫做小圆。在球面上,两点之间的最短连线的长度,就是经过这两点的大圆在这两点间的一段劣弧的长度,我们把这个弧长叫做两点的球面距离。

球体的表面积是圆周率314乘以半径的平方,半径是直径40÷2=20,那么表面积就是314乘以20再乘以20=1256平方厘米,体积公式是2乘以314再乘以半径,就是2×314×20=1256立方厘米

V球=4πr3÷3 。

球的体积的原理是祖堩原理,是用夹在两个平行平面的几何体,用与这两个平面平行的平面去截它们,如果截得的截面的面积总是相等, 那么夹在这两个平面间的几何体的体积相等。

为了应用组堩原理,设球半径为R,Pi表示圆周率,"x^y"表示x的y次方,先将球分成两个半球,球出一个半球的体积就可求出球的体积,在半球顶上做一个与半球地面平行的平面,在这两个平面之间,构造一个圆柱体,使得它的高低面半径均等于球半径。

然后,在构造的圆柱体中去掉以该圆柱体的上底面为底面,以该圆柱体的高为高的圆锥体的那部分体积,则所剩的部分体积为2(PiR^3)/3, 5、用距离底面为h的平面去截这两个几何体,截得的半球的截面面积S1=Pi(R^2-h^2),截得的被去掉一个同底等高圆柱体的面积为S2=Pi(R^2-h^2)。

于是,在这两个平面之间,用平行于这两个平面的第三个平面截得的这两个几何体的截面积总有S1=S2,根据祖堩原理,这两个几何体的体积相等,于是就有半球的体积V/2=2(PiR^3)/3, 因此,球体的体积公式为:V=4(PiR^3)/3。

半径是R地球的表面积计算公式:

S球的表面积=4πr2。

用一个平面去截一个球,截面是圆面,球的截面有以下性质,首先球心和截面圆心的连线垂直于截面,其次球心到截面的距离d与球的半径R及截面的半径r有下面的关系:r²=R²-d²。

球面被经过球心的平面截得的圆叫做大圆,被不经过球心的截面截得的圆叫做小圆,在球面上,两点之间的最短连线的长度,就是经过这两点的大圆在这两点间的一段劣弧的长度,我们把这个弧长叫做两点的球面距离。

半圆以它的直径所在直线为旋转轴,旋转所成的曲面叫做球面,连接球心和球面上任意一点的线段叫做球的半径,连接球面上两点并且经过球心的线段叫做球的直径,球内接正方体的体对角线,就是这个球的直径。

S=4πR^2

(4派RR

将一个底面半径R高为R的圆柱中心挖去一个等底等高的圆椎。剩下的部分与一个半球用平面去割时处处面积相等。等出它们体积相等的结论。而那个被挖体的体积好求。就是半球体积了。V=2/3πR^3

。因此一个整球的体积为4/3πR^3

球是圆旋转形成的。圆的面积是S=πR^2,则球是它的积分,根据积分公式可求相应的球的体积公式是

V=4/3πR^

欢迎分享,转载请注明来源:表白网

原文地址:https://h5.hunlipic.com/biaobai/2882935.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2024-01-18
下一篇2024-01-18

发表评论

登录后才能评论

评论列表(0条)

    保存