一元二次方程的根怎么求?

一元二次方程的根怎么求?,第1张

一元二次求根公式为x=(-b±√(b^2-4ac))/(2a)。

解:对于一元二次方程,用求根公式求解的步骤如下。

1、把一元二次方程化简为一元二次方程的一般形式,即ax^2+bx+c=0(其中a≠0)。

2、求出判别式△=b^2-4ac的值,判断该方程根的情况。

若△>0,该方程有两个不相等的实数。若△=0,该方程有两个相等的实数根。若△<0,那么该方程没有实数根。

3、然后根据求根公式x=(-b±√(b^2-4ac))/(2a)进行计算,求出该一元二方程的解。

扩展资料:

1、一元二次方程的求解方法

(1)求根公式法

对于一元二次方程ax^2+bx+c=0(a≠0),可根据求根公式x=(-b±√(b^2-4ac))/(2a)进行求解。

(2)因式分解法

首先对方程进行移项,使方程的右边化为零,然后将方程的左边转化为两个一元一次方程的乘积,最后令每个因式分别为零分别求出x的值。x的值就是方程的解。

(3)开平方法

如果一元二次方程是x^2=p或者(mx+n)^2=p(p≥0)形式,则可采用直接开平方法解一元二次方程。可得x=±√p,或者mx+n=±√p。

2、一元二次方程的形式

(1)一般形式

一元二次方程的一般形式为ax^2+bx+c=0,其中a≠0,ax^2为二次项,bx为一次项,c为常数项。

(2)变形式

一元二次方程的变形式有ax^2+bx=0,ax^2+c=0。

(3)配方式

-一元二次方程

男生求根公式是自信+勤奋+智慧=成功。只要是一元二次方程有根就可以。b的平方-4ac是根的判别式。△>O方程有两个不相等的式等于0有两个相等的,小于0没有实数根。所以在初中阶段,一元二次方程的求根公式很重要。

求根公式是用配方法求得的

b^2-4ac在大于等于0下,有实数根

题干中的,用整体换元法,把e^x,看成x^2,然后它是大于0的,即可求解

求更公式相关内容如下:

求根公式一般指的是,一元二次(或多次)的方程 程序化得出的的求根计算公式。例如 一元二次方程ax²+bx+c = 0的求根公式是 x = [(-b)±√(b²-4ac)] / 2a。

二次方程式是古老的数学公式,其历史可以追溯到公元前2000年的古代巴比伦人。它最初是被用来计算涉及矩形长度可能变化的问题的方法。它是一个“多项式方程”,意味着它始终有两个有效解。

在典型的二次方程式X^2-BX + C = 0中,学生们会尝试根据经验法则求出X的两个不同解:B的值应等于两个不同解值的总和,而C则等于两个解值相乘得到的结果。

这条规则给了学生们一个大致的框架,当前大多数学生都会使用猜测和校验方法进行求解,在该方法中,他们对答案可能落在什么范围内进行有根据的猜测,然后计算其猜测是否真正有效。

现在卡内基梅隆大学的一位教授为全球正在学习代数的学生带来了一个好消息,他提供了一种更简单有效的方法,来解决涉及二次方程的问题。

这个新方法是罗博深博士在指导参加美国数学奥林匹克竞赛的初中生,打算编写一些涉及二次方程的测试问题时无意中发现的。他的方法包括应用一个简单得多的方程来求解二次方程中的一个变量,而不必进行通常很繁琐的整个方程的计算。

求根公式如下如图所示:

一元二次方程成立必须同时满足三个条件:

1、是整式方程,即等号两边都是整式,方程中如果有分母;且未知数在分母上,那么这个方程就是分式方程,不是一元二次方程,方程中如果有根号,且未知数在根号内,那么这个方程也不是一元二次方程(是无理方程)。

2、只含有一个未知数。

3、未知数项的最高次数是2。

含义及特点:

1、一元二次方程的解(根)的意义:能使一元二次方程左右两边相等的未知数的值称为一元二次方程的解。一般情况下,一元二次方程的解也称为一元二次方程的根(只含有一个未知数的方程的解也叫做这个方程的根)。

2、由代数基本定理,一元二次方程有且仅有两个根(重根按重数计算),根的情况由判别式决定。

-一元二次方程

原方程ax^2 bx c=0

两边同除以a:x^2 (b/a)x c/a=0

移项:x^2 (b/a)x=-c/a

左边配方:x^2 2(b/2a)x (b/2a)^2=-c/a (b/2a)^2

即(x b/2a)^2=(b^2-4ac)/4a^2

两边开方:x b/2a=±√(b^2-4ac)/2a

整理得:x=(-b±√(b^2-4ac))/2a

手机打字不容易,给分吧。

一元二次方程的两个根的公式:

假设一元二次方程 ax²+bx+C=0(a不等于0),方程的两根x1,x2和方程的系数a、b、c就满足:x1+x2=-b/a,x1x2=c/a。

如果两数α和β满足如下关系:α+β=-b/a,α·β=c/a,那么这两个数α和β是方程 ax²+bx+C=0的根。通过韦达定理的逆定理,可以利用两数的和积关系构造一元二次方程。

一元二次方程

一元二次方程的求根公式:x=[-b±√(b²-4ac)]/2a。

一元二次方程的标准形式:ax²+bx+c=0(a≠0)。

只含有一个未知数(一元),并且未知数项的最高次数是2(二次)的整式方程叫做一元二次方程。一元二次方程经过整理都可化成一般形式ax+bx+c=0(a≠0),其中ax叫作二次项,a是二次项系数;bx叫作一次项,b是一次项系数;c叫作常数项。

二元一次方程的求根公式为:x1=(-b+(b^2-4ac)^1/2)/2a,x2=(-b-(b^2-4ac)^1/2)/2a,其中a不等于0。

二元一次方程组定义:方程组中有两个未知数,含有每个未知数的项的次数都是1,并且一共有不少于两个方程。二元一次方程组的解:两个二元一次方程的公共解,叫做二元一次方程组的解。

欢迎分享,转载请注明来源:表白网

原文地址:https://h5.hunlipic.com/biaobai/2740093.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2024-01-08
下一篇2024-01-08

发表评论

登录后才能评论

评论列表(0条)

    保存