NASA 成立以来都有哪些比较知名的航天器

NASA 成立以来都有哪些比较知名的航天器,第1张

NASA成立以来那些著名的航天器

1959 - 1963 水星计划 (Project Mercury)水星计划的目的是验证载人航天的可行性,并抢在俄国人之前把宇航员送上太空(近地轨道)。一共六次任务,完成了首次载人航天飞行、首次近地轨道绕行和首次超过一天的任务。

(水星计划六次载人发射的场景拼图,可见所使用火箭的不同。)

2  196155 Mercury-Redstone 3 / Freedom 7 -第一位美国宇航员:发射升空的水星计划 Freedom 7 飞船,载着航天员 Alan Shepard 完成了美国首次载人航天飞行。飞船完成了时长 15 分钟的亚轨道飞行,达到了 188 km 的远地点高度。

(发射时的场景)

3  1961721 Mercury-Redstone 4 / Liberty Bell 7 - 第二位升空的美国宇航员:设计与前一次任务相同的 Liberty 7 飞船,载着 Gus Grissom(之后丧命于 Apollo 1 任务,后文有提到)完成了第二次亚轨道飞行。返回落海时舱门意外打开,海水瞬间涌入,Gus 险些丧命不过被直升机救起。

(升空前的 Gus Grissom 和他的飞船)

4  1962220 Mercury-Atlas 6 / Friendship 7 - 首位完成近地轨道绕地飞行的美国宇航员:后来当上了俄亥俄州参议员的宇航员 John Glenn 乘 Friendship 7 飞船完成了美国人的首次近地轨道绕地飞行(俄罗斯人的首次是 Yuri Gagarin 在 1961412 完成的,绕地一圈),一共 3 圈。

(升空前的 John Glenn 和他的飞船)

5  1962912 "We choose to go to the Moon":肯尼迪在莱斯大学演讲,提出要在 1970 年到来之前完成登月。

"We choose to go to the moon We choose to go to the moon in this decade and do the other things, not because they are easy, but because they are hard, because that goal will serve to organize and measure the best of our energies and skills, because that challenge is one that we are willing to accept, one we are unwilling to postpone, and one which we intend to win, and the others, too"  

- John F Kennedy

6  1963 - 1966 双子座计划(Project Gemini)<双子座计划的目的是在确定了登月的目标后,验证其可行性。一共十次任务,完成了轨道交会、太空对接、出舱行走等多种登月所必备的技术的可行性验证和试验。

(双子座计划使用飞船的结构示意图 )

7  196563 - 196567 Gemini 4 - 美国宇航员的首次太空行走:宇航员 James McDivitt 和 Ed White 乘双子座 4 号飞船登上太空,并由 Ed White 完成美国宇航员的首次太空行走,时长 22 分钟。

由另一位宇航员 James MvDicitt 记录下的 Ed White 出舱行走的情景(从双子座计划,NASA 开始在太空任务中使用哈苏相机,成像质量更好)

8  1965124 - 19651218 Gemini 7 & Gemini 6A - 首次轨道会合:Gemini 6A 任务原计划由宇航员 Wally Schirra 与 Thomas Stafford 操作双子座 6 号飞船和无人目标飞船进行对接,但是目标飞船发射失败,迫使任务改为和载有宇航员 Frank Borman 和 Jim Lovell 的双子座 7 号飞船进行轨道会合试验,同时确定宇航员在太空生存 2 周的可能性。

(会和后从双子座 7号飞船拍到的双子座 6 号飞船)

9  1966316 - 1966317 Gemini 8 - 首次太空对接:宇航员 Neil Armstrong 和 David Scott 乘双子座 8 号飞船完成与目标飞船的轨道会合后,完成首次太空对接。

(在双子座 8 号飞船中看到的对接目标飞船)

10  1961 - 1972 阿波罗计划 (Apollo program)<阿波罗计划在 1969 年完成了人类首次登月的壮举,实现了肯尼迪设下的目标。总共 11 次载人任务,登月 6 次,共有 12 位宇航员踏上月球表面。原定 10 次登月,有一次失败(阿波罗 13 号),最后三次(阿波罗 18、19 和 20 号)被取消。

阿波罗计划中使用的 Apollo 飞船 和 土星 5(Saturn V)火箭可以说是当时美国举全国之力(阿波罗计划总耗资 239 亿美元,相当于现在的约 1000 亿美元)在短短的几年时间内设计、制造、试验完成的。

(阿波罗飞船在火箭前段整流罩内的示意图)

最前端的是逃逸塔,在发射阶段一旦出现问题,逃逸塔火箭启动将下面的指挥舱(Command Module)带离土星火箭。指挥舱,也是返回舱,是三位宇航员大部分时间所待的地方。与指挥舱连接在一起的是服务舱(Service Module),搭载引擎和燃料、氧气等。下面是登月艇(Lunar Module),土星火箭完成最后一次点火,将飞船送入地月转移轨道后,连为一体的指挥舱与服务舱(Command/Service Module)将会和载有登月艇的火箭分离,旋转 180 度,再和它对接,将登月艇从火箭里 “抽” 出来,完成这个高难度动作后,就可以飞向月球了。登月时,指挥(Commander)和登月舱驾驶员(Lunar Module Pilot)乘登月舱在月球表面着陆。指挥舱驾驶员(Command Module Pilot)在指挥舱中,留在绕月轨道上,等待登月完成后和升空的登月舱会合对接后返回地球。进入大气层之前,月岩样品等被转移至指挥舱,抛弃登月舱和服务舱。随后指挥舱带着三位宇航员重返大气层。

(阿波罗 15 号的指挥/服务舱,由登月舱宇航员拍摄)

登月艇由两部分组成:下半部分是返回时留在月球表面的下降级(Descent Stage),包括着陆下降时用的反推引擎及燃料,和要留在月球表面的科学实验仪器等,在后期的任务中所用的月球车也是放在这个舱里;上半部分是返回时的上升级(Ascent Stage),也有一个引擎,当它点火时,将下面的下降级作为发射台(这也是高难度动作…)。

(阿波罗 16 号的登月舱)

土星火箭高达 110 米,重 3000 吨,其中燃料就有 2500 吨,第一级的五台 F-1 引擎可以产生 3400 吨的推力,可以将 45 吨重的阿波罗飞船送往月球(很多现代火箭的近地轨道运载能力都远低于这个数字)。它是人类有史以来所制造的最大、最重、推力最强劲、运载能力最大(值得一提的是,中国研发中的长征-9 火箭的设计运载能力超过了土星火箭)的火箭。

(从发射架拍到的阿波罗 11 号飞船起飞的场景)

11  1967127 Apollo 1 - 三位宇航员葬身火海:原定于 1967 年 2 月 21 日发射的 AS-204 任务,在之前的一次例行发射演练中,由于座舱失火,导致三名宇航员 Gus Grissom、Ed White 和 Roger Chaffee 丧生,其中前两人都是参加过水星计划和双子座计划的资深宇航员(前面均有提到)。导致起火的原因是座舱中充满了比大气压压力要大的纯氧,同时舱盖是向内开的,以保证不会意外打开。结果电火花造成起火后,火势迅速蔓延,同时三位宇航员无法打开舱盖,最后导致惨剧。

(被烧毁的指挥舱)

12  19681221 - 19681227 Apollo 8 - 人类首次绕月飞行:阿波罗 8 号飞船搭载宇航员 Frank Borman、Jim Lovell 和 William Anders 在历史上首次离开近地轨道,飞向月球。飞船绕月 10 圈,共 20 小时。

阿波罗 8 号宇航员拍摄到的历史上首张地球全景照片(近地轨道距离地球太近,无法拍到完整的地球)

13  1969716 - 1969724 - 人类首次登月:在 8 年之前阿波罗计划启动的时候,NASA 甚至连可以把宇航员送上太空的火箭都没有,而是在弹道导弹上装个载人舱,改装成了美国最早的载人火箭。短短 8 年之后的 1969 年 7 月 20 日,阿波罗 8 号飞船登月成功,Neil Armstrong 和 Buzz Aldrin 踏上了月球表面,赶在 1970 年到来之前完成了肯尼迪设下的 “1970 年前登月” 的目标。指挥舱驾驶员是 Michael Collins。Neil Armstrong 首先出舱,Buzz Aldrin 随后,两人在月球表面活动了 2 小时 30 分钟。

("That's one small step for a man, one giant leap for mankind" 个人的一小步,人类的一大步。安装在登月艇侧面的电视直播摄像机拍到的即将登上月球的 Neil Armstrong)

Buzz Aldrin 拍摄的自己的脚印(虽然这张照片极为有名,但是本来拍摄的目的其实是用来计算月球土壤的硬度等参数的)

(Neil Armstrong 拍摄的 Buzz Aldrin,从面罩反光中可以看到 Armstrong)

14  1970411 - 1970417 Apollo 13 - 一次成功的失败:成功登月 2 次之后,第三次阿波罗任务遇到了前所未有的困难。在飞向月球途中,一次例行的设备检查使得服务舱的氧气罐发生爆炸,三位宇航员 James Lovell、John Swigert 和 Fred Haise 不得不关闭所有仪器设备,转移到登月舱中,将登月舱作为 “救生艇”,在克服了一个接一个的困难,解决了无数的问题之后,三人平安返回。

(分离后拍到的服务舱,氧气罐爆炸将整个面板炸飞)

15  1971726 - 197187 Apollo 15 - 首次使用月球车:在月球表面蹦蹦跳跳实在不爽,搞个月球车吧!于是 NASA 就搞了个月球车…全重仅 220 kg,还可以折叠塞到登月艇里,比 F1 赛车不知道高到哪里去了。

(史上最贵的车)

16  1973 - 1974 天空实验室计划(Skylab)天空实验室计划是 NASA 的空间站计划,阿波罗计划结束后还剩余三枚土星 V 火箭,NASA 决定把它利用起来,用来发射无人的空间站(实际只有第一次天空实验室任务 SL-1 使用了土星 V 火箭,后续任务都是使用的土星 IB 运载火箭,剩余的两枚土星 V 火箭都躺在博物馆里了…- -),后续任务再将宇航员送到空间站里(和中国的天宫计划类似)。

END

这个无人驾驶的~~~绝大多数航天器为无人飞行器,各系统的工作要依靠地面遥控或自动控制。航天员对载人航天器各系统的工作能够参与监视和控制,但是仍然要依赖于地面指挥和控制。航天器控制主要是借助地面和航天器上的无线电测控系统配合完成的。航天器工作的安排、监测和控制通常由航天测控和数据采集网或用户台站(网)的中心站的工作人员实施。随着航天器计算机系统功能的增强,航天器自动控制能力在不断提高。

大家平时有观看过科技频道吗中国发射的“神舟八号”“神舟九号”“神舟十号”与“天宫一号”大家应该都知道吧,可是大家知道他们为什么要在太空进行交会对接吗其中的原因是什么呢相信许多朋友们都不太了解,下面就由我来给大家解答一下疑惑吧。

由于科学研究的需要,空间站的尺寸十分巨大。例如,“国际空间站”由航天员居住舱、实验舱、服务舱、对接过渡舱、桁架、太阳翼等部分组成,长109米,宽(含翼展)73米,总质量约420吨。无论是什么型号的运载火箭,都不可能一次把数百吨的空间站运送到轨道上,所以只能将各舱段分批发射,然后在太空利用交会对接技术搭建起来。所以交会对接技术是建设空间站的基础。

在其他太空活动中,比如为长期在轨道上运行的空间站运送航天员和提供物资补给,或在轨航天器之间的互访、物资转运或紧急救生等,也要用到交会对接技术。在未来的深空探测等航天活动中,交会对接技术同样是不可或缺的。

航天器的交会对接是指两个航天器在空间轨道上会合并在结构上连成一个整体的技术,是实现空间站、航天飞机、太空平台和空间运输系统等的空间装配、回收、补给、维修、航天员交换及营救等在轨服务的先决条件。

在空间交会与对接的两个航天器中,一个称目标飞行器,一般是空间站或其他大型航天器,是准备对接的目标;另一个称追踪飞行器,一般是地面发射的宇宙飞船、航天飞机等,是与目标飞行器对接的航天器。例如“天宫一号”就是目标飞行器,而“神舟十号”就是追踪飞行器。

交会对接时,最主要的困难在于两个航天器都在以7千米每秒以上的速度运行,它们的相对位置和速度都必须精确控制,否则可能会彼此错过甚至追尾碰撞。

航天器执行交会对接,可分成四个步骤:远程导引段、近程导引段、最终逼近段和对接停靠段。在开始的远程导引段,在地面测控的支持下,追踪飞行器经过若干次变轨机动,进入到追踪飞行器上的敏感器能捕获目标飞行器的范围(一般为15~100千米)。在近程导引段,追踪飞行器根据自身的微波和激光敏感器测得的与目标飞行器的相对运动参数,自动引导到目标飞行器附近的初始瞄准点(距目标飞行器05~1千米)。进入最终逼近段,追踪飞行器首先捕获目标飞行器的对接轴,对接轴线不沿轨道飞行方向,要求追踪飞行器在轨道平面外进行绕飞机动,以进入对接走廊。此时,两个飞行器之间的距离约100米,相对速度约1~3米/秒。最后的对接停靠段,追踪飞行器利用由摄像敏感器和接近敏感器组成的测量系统精确测量两个飞行器的距离、相对速度和姿态,同时启动小发动机进行机动,使之沿对接走廊向目标最后逼近。在对接前关闭发动机,以015~018米/秒的停靠速度与目标相撞,最后利用栓—锥式或异体同构周边式对接装置,使两个飞行器在结构上实现硬连接,完成信息传输总线、电源线和流体管线的连接。

自20世纪60年代以来,美国、俄罗斯(苏联)、中国、日本等国总共实施了300多次航天器交会对接,其中俄罗斯(苏联)进行的次数最多。目前,完全独立拥有空间交会对接技术的国家有美国、俄罗斯和中国。

1966年3月,美国航天员阿姆斯特朗和斯科特驾驶“双子星座8号”飞船,与经过改装的一个火箭第三级无人舱体,进行了人类历史上首次载人空间交会对接。从1964年到1966年,“双子星座号”系列飞船通过了2次无人和10次 载人飞行,验证了多种交会对接方式和技术,为阿波罗探月活动的顺利进行做好了充分准备。美国航天器的交会对接多采用手动方式,这主要全面考虑技术的把握性、安全可靠性和成本经济性等诸多因素。

俄罗斯(苏联)是进行航天器交会对接最多的国家,多采用自动对接技术。1967年,第一次无人航天器自动交会对接就是由苏联的两艘“联盟”飞船完成的。“联盟”飞船至今仍在服役,它和“进步号”货运飞船已经执行过200多次交会对接任务。

与其他任务一样,交会对接也不能保证每次都获得成功。美国交会对接发生过两次故障:一次是“双子星座9号”与“阿金纳”目标飞行器对接时发生故障;另一次是“阿波罗14号”飞往月球过程中,在指令舱与登月舱对接时,由于对接机构材料原因,出现多次对接失败,直到第六次试接才获得成功。俄罗斯交会对接的失败给人们留下深刻印象。1997年6月24日,“进步M-34号”货运飞船脱离“和平号”空间站对接口,飞离了空间站一段距离,次日该飞船飞回来再次逼近空间站时,由于制动控制部件失灵,飞船没有及时对航天员指令做出响应,直接撞到“和平号”的“晶体”舱上。2010年,俄罗斯两艘“进步M号”货运飞船与“国际空间站”进行自动对接时也先后失败,后来采取了改进措施才获得成功。

在双子星座军阀中,玩家能够通过抢夺飞船来直接占领,从而大大提高进行游戏的效率,但不少玩家在抢船的过程中由于不清楚方法而导致经常抢船失败,那么双子星座军阀怎么抢船呢?下面深空高玩就为大家带来双子星座军阀抢船方法介绍,一起来看看吧。

双子星座军阀提高占船成功率方法

技能里面有个战争,里面有抢船的几率。

不是每一个舱室都要占领,可以直接破门到舰桥。

抢船点数主要和船只类型,技能点,研究挂钩,越大的船点数越多。

同时技能点还分两种:一种是靠点,一种是靠达成目标解锁。

双子星座军阀

上次讲到了苏联开始对联盟号飞船进行试验。联盟号飞船的版本很多,其中有一个版本是登月专用版。飞船本身改动不大,但是配备的服务舱和轨道舱有很多的变化。比如说登月的版本就需要在前面对接一个登月舱。不过当时苏联设计的对接机构是插头插座的结构,是分“公母”的。没法实现对接以后人员直接从轨道舱进入登月舱,还需要宇航员穿上宇航服,进入太空,然后爬进前面的登月舱,把门关好。登月舱是杨格尔设计局搞出来的,联盟号是科罗廖夫的设计局主导的,不是一家人。

当时,苏联还没有测试过太空对接,因此实验对接是联盟号很重要的一项工作。第一艘被发射到太空的联盟飞船是无人飞船,里面安装了一个假人用于收集测试数据。既然不载人,就没有用联盟号的代号,而是采用科斯莫 133 的编号。科斯莫就是宇宙的意思,苏联的一系列飞行器都叫宇宙,不管是卫星也好太空船也罢,反正不想让你打听用途,就起这么个稀里糊涂的名字。

本来这艘飞船是 2 号,应该是 1 号先发射,然后再发射 2 号,在太空里实现对接。但是,1 号出故障了,2号只能先发射。本来打算1号修好了以后能赶上来。结果左等不来右等不来。宇宙 133 号在太空里还出故障了,自己一直在旋转,姿态稳定不下来。最后,耗光了飞船的燃料也没有搞定。反正这艘飞船就是不怎么听话,地面的控制人员花了两天时间,做了 5 次努力,也没能拯救宇宙 133 号。

地面人员就这么眼巴巴看着宇宙 133 号的轨道逐渐降低,粗略的计算了一下飞船的飞行轨迹,最后地面测控人员发现这艘飞船可能会落到中国境内,实在是没办法,开启了自毁装置。飞船上有 23 公斤的炸药,直接把飞船炸成了碎片。

那么正在修理的 1 号飞船怎么样呢?1 号飞船还不如 2 号呢。本来都准备好发射了,结果点火的时候其中一台助推器没点火,自动控制装置马上就把所有助推器和主发动机熄火了。火箭愣是哑火了,停在发射台上,发射台周围马上喷出大量的水,用来给飞船降温。当时科罗廖夫已经去世了,米申接手了科罗廖夫的设计局。火箭出问题了,米申马上派人去检查,先要把燃料卸出来。有当年涅杰林的前车之鉴,谁也不敢造次。

结果,到了 27 分钟的时候,出事儿了,火箭的逃逸塔突然点火了。苏联这是第一次使用逃逸塔,之前都是采用弹射座椅。逃逸塔把顶上的飞船整个给拔出去了,打开降落伞,安全降落在了 400 米外。但是,逃逸塔顺手就把火箭的第三级给点着了。下面的火箭正在卸燃料,也不知道高温燃气是怎么烧过去的,离着还挺老远呢。工作人员一看,吓得抹头就跑。还好不是立刻爆炸,有 2 分钟的缓冲时间,尽管如此,还是造成了 1 人死亡多人重伤的惨剧。说白了,都说宇航员危险,其实航天事业中,死在地面的人比死在太空的多得多。

所以说,联盟号的研发一开始就不顺利。都说苏联是举国体制,你仔细去看看他们的工作,你就会发现,根本不是。设计局还是挺想省钱的,有些该在实验室里做的实验,他们就是没做。航天方面,地面测试的钱是一点都不能省的呀,省了就要出大麻烦。

美国人的双子座计划在 1966 年已经全部收官了,美国人倒是比苏联人顺利得多。双子座 8 号要完成的就是双子座 6 号泡汤的计划,那就是和阿金纳上面级进行对接。还要进行美国人的第二次太空行走。从双子座飞船的前部拿回一个实验装置,还要激活阿金纳上面级的一个微流星探测装置。这都是宇航员斯科特的事儿,在后边给他观敌料阵的是 阿姆斯特朗,这位就是未来的登月第一人 。

但是这一次,斯科特完全没有任何出舱的机会。NASA 用宇宙神火箭发射了阿金纳上面级,阿金纳工作正常,进入了 298 公里的圆轨道。接下来就等着双子座 8 号发射升空了。双子座飞船是用大力神火箭发射的,发射倒是一切顺利。接下来就是和阿金纳目标飞行器做对接。阿姆斯特朗他们做了 4 次轨道调节。开始逐渐逼近阿金纳目标飞行器。在距离 300 公里的时候,雷达捕捉锁定了阿金纳飞行器,只有捕捉到了,才能用计算机控制做自动对接。

美国人用的对接机构也很简单,阿金纳目标飞行器头上装一个漏斗,双子座飞船本来就是个圆锥形,顶上有个突出的圆柱体。只要把圆柱体插进阿金纳的漏斗,锁死,那就算万事大吉了。阿金纳不是太空站,比一口水缸粗不了多少。所以双子座上的人也不可能钻进钻出。所以 这个时候的对接真的只是把飞行器插在一起 ,是没办法让宇航员钻过去的,美苏两国都是如此。

双子座 8 号和阿金纳目标飞行器的距离越来越近。轨道渐渐的汇合,最后几乎贴到一起。阿姆斯特朗先用眼睛检查了一下阿金纳飞行器,看看有没有损坏。然后在得到地面的许可以后,开始一点点接近阿金纳,速度大概是每秒靠近 8 厘米。就这么一寸一寸地靠过去,对准了阿金纳头部的对接口,双子座飞船的头插了进去,等听到咔嚓一声锁定的声音,绿灯亮起,表示两个飞行器已经完成了对接。 这是人类 历史 上第一次太空飞行器实现了对接 。

本来按照程序,阿金纳和双子座的联合体应该是转动 90 度,但是这个联合体开始慢慢翻滚,两位宇航员只能靠双子座上面的姿态控制火箭来调整姿势,想办法让联合体稳定下来,阿姆斯特朗只要手控,飞船就能保持稳定,但是一撒手就不行。如果再这样下去,燃料会消耗光的。

最后,阿姆斯特朗决定和阿金纳飞行器脱离,可是脱离以后,双子座 8 号飞船反而转得更快了,1 秒转一圈,这个速度很恐怖,舱里的好多东西被都甩到舱壁上。阿姆斯特朗在控制飞船姿态过程之中耗费了大量的燃料,他们唯一能做的就是尽快返回地球。

本来按计划,他们应该是 3 天以后返回大气层,落在大西洋。现在返回地面的话,落点相差太远了。但是阿姆斯特朗他们俩坚持不到那个时候了,只要还待在太空里,飞船就会翻滚,翻到人彻底头晕脑胀,最后燃料全部耗光,那时候,想回地球都回不去了,干脆现在就下去算了。

他们赶紧往计算机里输入数据,改变坠落地点。在中国上空,他们开启了反推火箭,开始再入大气层的过程。这个地方完全在美国的测控网覆盖范围之外,地面已经没办法看到他们的情况了。最后,他们掉在了冲绳岛以东 800 公里,横须贺以南 1000 公里的海上。这地方是前不着村后不着店。在海上漂浮着,完全孤立无援。

美国负责救援的人员也抓瞎了,这是世界上飞船返回地面,偏离落点最大的一次。偏出去半个地球啊。还是一架 C54 巡逻机发现了他们,这是一架固定翼飞机,没办法悬停,但是有三个救援人员跳伞下来,开着橡皮艇过来,把两个宇航员从舱里拉出来。太平洋是一点都不太平,风吹浪打,这 5 个人都开始晕船。就这么在海里飘了 3 个钟头,梅森号驱逐舰才开到附近,他们连双子座飞船一起全都捞上来了。顺便说一句,梅森号后来被美国送给了台湾,改名叫“绥阳”号,2003 年沉在了台东外海,成了人工珊瑚礁。

两个宇航员在船上睡了 9 个钟头,第二天驱逐舰开到了冲绳的那霸。有宇航局的官员来迎接他们,把他们带到了嘉手纳空军基地,从那儿搭飞机回了佛罗里达。阿姆斯特朗回去还遭到质疑,有一种说法是他按错了按钮。不过我想不应该,可能还是飞船本身的问题。静电导致某个姿态调整发动机一直不听话,一直在喷气,弄得飞船一直打滚。后来所有的控制电路都增加了屏蔽,而且改成了独立线路,防止出现静电干扰问题。

后面几次双子座飞船就比较的顺利,美国人太空行走的经验越来越多。一开始是延长到了 49 分钟,后来在外面飘几个小时也不成问题了。 双子座 12 号任务,奥尔德林完成了 5 小时的太空行走 。

为什么奥尔德林能够大幅度提高太空行走的时间呢。这和地面训练是分不开的。奥尔德林提出用一个大水池来模拟太空的漂浮环境,这样就可以在地面上训练宇航员的舱外活动经验。这的确是个好办法。在此之前,每次舱外活动都把宇航员弄得一身的汗,脸憋得通红,在太空的失重环境下,浑身找不到发力点,精神又紧张,一个个都心跳加速,手忙脚乱。所以,能在地面解决那是最好不过的事情,现在 水池训练成了宇航员的必修科目之一 。

苏联那边一直不太顺,宇宙 133 失控了,不得不开启自毁,另一艘飞船干脆火箭在地面就炸了,连代号都没有。下一艘实验飞船编号为宇宙 140 号,还是从拜科努尔发射升空。这艘飞船还是老毛病,跟 133 号一样,在太空里姿态控制有问题。但是地面人员还算能控制住局面。就这么在太空里坚持了两天,再入大气层的时候,因为飞船姿态控制的问题,角度有偏差,导致飞船像打水漂一样弹出去了。这一下就偏离了原定的着陆地点,偏出去好几百公里。这一歪不要紧啊,倒是打得挺准的。飞船直接砸穿了咸海的冰层,掉进了 10 米深的水下。

当年的咸海总面积 68 万平方公里,是世界第 4 大湖泊。比两个渤海还大,那真是烟波浩渺,湖水还是蛮深的。现在的咸海基本已经干透了,水面变成了 4 个不相连的湖泊,总面积只剩下过去的 10%,即便如此,也比我国最大的青海湖要大。

苏联派潜水员下去,把飞船给捞出来了。等捞起来一看,大家倒抽了一口凉气,原来是防热大底已经被烧穿了一个 30 公分的大洞。联盟号飞船是个钟形,和东方号的球形不一样。返回大气层的时候是底部朝前拍回地球。只有底部承受高温,飞船身上温度不算高。底部要加隔热层,还要加烧蚀材料,靠烧蚀材料的蒸发来带走热量,防止温度高到烧化的程度。如果防热大底被烧穿,那是非常危险的事情。

所以,技术人员普遍认为,应该再发射一艘无人飞船做实验。毕竟这次实验,稀里哗啦地出了一堆的问题。但是,领导层认为,这些毛病都很容易解决,即便是不做测试也没问题。防热大底被烧穿,那是因为再入大气层的角度不对造成的,与飞船设计无关。飞船的姿态控制问题,应该是很容易解决的。因为东方号每次返回也会打转转。最后不都是有惊无险嘛。所以,他们还是决定,下一次就正式发射载人的联盟一号飞船,隔一天发射联盟2号飞船,实现太空对接。美国人只是用双子座飞船和阿金纳飞行器对接,俄国人打算对接两艘载人飞船,然后交换宇航员,这可比美国人强多了。

当然,苏联人知道美国已经超过自己的,所以领导层也有点着急。现在美国人白送了一个机会,前些天,他们的新的阿波罗飞船在地面测试的时候炸了,刚好给了苏联人翻盘的可能性。

炸了是怎么回事呢?事情是这样的,阿波罗飞船是美国的新飞船,比双子座要大一号,起码可以运载 3 个宇航员,登月计划也采用这个飞船。所以这是个关键。新型的阿波罗飞船总要发射到地球轨道去测试吧。那犯不着用巨大的土星五号运载火箭,用土星 1B 火箭就够用了。本来阿波罗飞船是要在 1966 年内发射,但是后来推迟到了 1967 年。这次选定的宇航员有格里森,怀特和查菲。

格里森是老宇航员了,参加了水星计划,他乘坐的自由钟 7 号因为舱盖的爆炸螺栓突然启动,炸开了舱门,导致飞船大量进水,最后沉入了海底。格里森对此还耿耿于怀呢。后来他还参加了双子座 3 号任务,所以他算是经验最丰富的的宇航员之一。怀特嘛,不久前刚完成双子座 4 号任务,成了第一个完成太空行走的美国人。查菲是个新兵蛋子,压根没上过太空。所以,这个团队算是老中青相结合。

1967 年的 1 月 27 号,他们来参加联合演练。这一次并非是发射任务,而是地面测试,看看飞船完全依靠自身的电力,能不能正常运转。三个人穿好宇航服,和真实发射的流程都是一样的,然后钻进了飞船里,封闭了舱门。

这天早上,工程师们就觉得奇怪,管子里老是有一股怪味。不知道从哪里来的,折腾了一个小时,总算是没有怪味了。然后呢,飞船的无线电出问题了,格里森在里边还挺郁闷的,如果两栋大楼之间都无法通话,就更别提上太空了。无线电修来修去修不好,于是整个测试流程就卡住了,进行不下去了。

就在这时候,监控飞船的工作人员发现飞船起火了。马上听到了宇航员的呼救声。通过闭路电视可以看到舱内的情况,不知道怎么回事,舱内烧起来了。通过监控也看到舱内的宇航员也在拼命想打开舱门,但是要连开 12 个机构才能把门打开,他们显然是做不到的。外边的人也想把飞船打开,可是门就是打不开,最后眼睁睁地看着三个宇航员被活活的烧死。

这个门怎么就打不开呢?我们下回再说。

神舟十二号火箭飞船组合体的顶端有一个很明显的 “尖尖” 。但细心的朋友会发现,之前咱们发射的“天和”核心舱和“天舟”二号货运飞船, 都没有这个“尖尖”

这个“尖顶”究竟有什么玄机?如果你看一看几年前的神舟十一号载人飞船,你会发现它也有这个“尖顶”。

这个“尖顶”一般只用在载人航天上,它的名字叫做 “逃逸塔” ,是航天员保命的“护身符”。

逃逸塔曾经救下了在苏联和俄罗斯飞船上的4名宇航员。而美国之前放弃了逃逸塔,但却搭上了7条宇航员的人命

现在的人类航天仍然完全依赖火箭,而火箭从来都是最危险工程项目之一。有的时候,它是人类强有力的工具,但有的时候,它就是一个装满燃料的大炮仗。一旦在发射过程中发生倾倒等事故,火箭本身和它所要运载的所有东西,将全部付之一炬。

随着人类 科技 水平的提高,火箭的安全性也逐渐升高。现在世界主流火箭平均的失败率在2%到4%左右。对于一般的太空运输而言,这个数字已经很低了。但是如果载人,这个2%的失败率则完全无法接受,这相当于100次载人航天,平均就要有两次要死人。

现在全世界拥有载人航天能力的国家,全部都会把保障“航天员”的生命安全放在首位。这首先当然是出于人道主义。而另一方面, 宇航员几乎就是各国航天事业最贵重的“资产”

火箭炸了,卫星毁了,都没有太大关系,只要技术在,重新生产并没有太大问题。但航天员则是万里挑一的, 国家选拔培养一个航天员所需要的花费是百亿级别的 。而更重要的,是培养航天员所需要的花费的时间。所以任何国家都不会拿航天员去冒火箭2%的风险。

在这样的环境下,“逃逸塔”诞生了。

逃逸塔安装在载人飞船火箭的顶部,并装有固体火箭发动机。从航天员进入飞船开始,一旦检测到火箭倾斜过大等可能造成火箭毁灭的紧急情况, 逃逸塔便会触发,启动发动机,带着飞船迅速脱离火箭本体 ,避免火箭爆炸时将载人飞船吞没。

脱离危险区后,飞船启动着陆程序,把宇航员安全送回地面。

由于火箭发射事故大部分都发生在点火起飞和低空飞行阶段,当火箭已正常飞出大气层后,事故风险大幅降低,逃逸塔便失去了作用。此时逃逸塔会与火箭飞船分离,以降低负载。

大部分时候,逃逸塔仅仅是作为保命的后备手段。到现在为止,人类进行的载人航天已经有好几百次了,而逃逸塔真正发挥作用只有3次。

1983年9月27日,苏联的联盟T10a飞船正准备发射,宇航员已进入飞船。在发射前倒数第90秒时,火箭助推器增压氮气管路的一个阀门失效,造成一台火箭发动机突然点火,结果引发整个火箭在发射台上爆炸!好在逃逸塔工作正常,检测到事故后立即带着飞船飞离发射台,两名宇航员得以幸存。

还有一次就发生在三年前。2018年10月11日,俄罗斯联盟MS-10飞船发射升空,其上载有一名美国宇航员和一名俄罗斯宇航员。在火箭升空后的第119秒,距离地面50km左右,四个助推器在分离过程中,有一个助推器分离不正常,并撞上了火箭芯级,造成火箭倾斜并关机。逃逸塔紧急逃生程序启动,两名宇航员在经历了6个G的过载后最终生还。

还有一次是美国人搞得,1961年4月25日美国 水星计划 飞船升空(注:水星计划是当时美国给首批载人航天计划起的名字,并不是要探测水星)。火箭在发射20秒之后失控,在第42秒开始自毁,它的逃逸塔运行正常,带着飞船分离,虽然飞船里只有一个假人,并没有真的宇航员。

“逃逸塔”作为保命措施还是比较可靠的,但是很遗憾,美国在航天技术革新的过程中,一度放弃了“逃逸塔”, 而这个决定让美国人付出了血的代价。

美国人在水星计划取得成功之后,又开始了 双子星计划 (注,这个计划当然也不是为了 探索 双子座,而是美国的双人航天计划)。这个时候,美国人不如苏联人踏实稳重的特点就显现出来了。

双子星计划的载人航天飞船都没有逃逸塔,取而代之的是宇航员的弹射座椅,宇航员在事故时可以弹射出舱,跳伞逃生。当然了,这东西只能在低空使用。如果在几十公里的高空弹射出舱,就只有死路一条了。

这么设计的一个原因是,逃逸塔太重,取消逃逸塔就可以减少额外的发射负载。

但是很幸运,双子星计划的所有载人飞船都成功了,没有出现火箭事故。而自此,美国人对逃逸装备逐渐开始忽视,这种忽视延续到了美国后来研发的 航天飞机 上。

最初航天飞机的设计是包含用于逃逸的固体火箭发动机的,但还是为了减重,航天飞机的逃逸装备被无情取消了。美国人认为,他们的航天飞机安全性已经非常高了,所以没必要搞什么逃逸塔之类的逃逸装备。

然而,广袤的宇宙没有像眷顾双子星计划那样,再一次眷顾航天飞机。

1986年,美国挑战者号航天飞机在发射后第73秒时,助推器发射故障,火箭爆炸。没有任何逃逸装备的挑战者号只能跟着火箭一起解体爆炸。7名宇航员殉职。

血的代价并没有促使NASA给剩余航天飞机加装逃逸装备。美国剩下的那几架航天飞机就这样一直对付了17年。在2003年,哥伦比亚号事故又有7名宇航员殉职之后。美国人再也受不了这种安全风险极大的航天方式了。2011年,美国全部航天飞机退役,美国再次回到了飞船 逃逸装备的路子上来。

中国的载人航天一直是走飞船的发展路径,经过二十多年的发展,中国神舟飞船的可靠性和成功率已经走在了世界前列。 从神舟五号,到现在的神舟十二号,已经把17人次的航天员送上了太空。

而每一次,中国航天的“逃逸塔”都在默默地保护着我们的航天斗士们。祝愿我们的神舟十二号三位航天员能够圆满完成任务,并安全回家。

请你在评论区写下你对中国航天的祝愿和期待,也请你帮我点个赞支持一下,我是@四角切圆 ,关注我了解更多世界大事,咱们下期再见。#全能创作家#

游戏是一款结合了RPG元素的太空战争作品,不过作为一款新作,新手们在游戏中不免会遇到许多过关方面的疑问,于是深空高玩这里就为大家提供了游戏各方面的解析,而这里为大家带来的是双子星座军阀飞船怎么占领的详解,若你也对此感兴趣的话千万别错过。

抢占飞船方法

技能里面有个战争,里面有抢船的几率。

不是每一个舱室都要占领,可以直接破门到舰桥。

抢船点数主要和船只类型,技能点,研究挂钩,越大的船点数越多。

同时技能点还分两种:一种是靠点,一种是靠达成目标解锁。

宇宙飞船进入太空后,为了能更好地利用卫星,发展太空空间,科学家利用分级火箭,把卫星送入太空,再组装完善。

太空中飞船的交接有哪些仪式?

很多人关注“神舟八号”、“神舟九号”、“神舟十号”与“天宫一号”的成功交接,并引发为热门话题。对于航天器为什么要在太空中交会对接充满了好奇。

当初“阿波罗”飞船上的宇航员和“联盟”飞船宇航员在飞船对接成功后,激动地在太空握手是因为科学研究的需要。对接之后,空间站的尺寸就大了,它由航天员实验舱、居住舱、对接过渡舱、服务舱、太阳翼、桁架等组成。这么重的空间站,不管多少级的运载火箭都不能一次性发射到轨道上,只能分批发射,然后在太空完成交会对接,用各种技术手段搭建起来。这样,建设空间站的基础就是要有交会对接技术。

交会对接技术在提供物资补给,运送航天员、轨航天器之间的互访、物资转运或紧急救生中、未来的深空探测都是不能缺少的。

在空间轨道上会合后的两个航天器,在空间结构连接成整体的技术,就是航天器的交会对接。是实现航天飞机、太空平台、空间运输系统、空间站、空间装配、回收、补给、航天员交换、维修及营救等不能缺少的条件。

飞船在太空如何进行交会对接?

空间交会就是两个航天器在太空对接:分目标飞行器和追踪飞行器。在空间准备对接的大型航天器或空间站的目标,是目标飞行器;追踪飞行器是地面发射的航天飞机、宇宙飞船与目标飞行器对接的航天器。相对接成功的“神舟十号”是追踪飞行器,“天宫一号”是目标飞行器。交会对接时,两个航天器主要的困难是,要在以7千米每秒以上的速度运行还要精确控制对接,差一点就会错过或者追尾碰撞,造成不可挽回的损失。

太空交会对接可以分四个步骤:远程导引段、近程导引段、最终逼近段和对接停靠段。

追踪飞行器在地面测控的支持下,经过若干次变轨机动进入到追踪飞行器上,利用敏感器捕获目标飞行器,目标范围大致在15~100千米。这时的近程导引段、追踪飞行器会启动微波和激光敏感器,获得目标飞行器的运行参数,把目标飞行器自动引导至初始瞄准点,距离是05~1千米。追踪飞行器会主动捕获目标飞行器对接轴,进入最终逼近段,对接轴线并不是沿轨道飞行方向,而是让追踪飞行器进入对接走廊,在轨道平面外飞行器要进行绕飞。当两个飞行器相对速度约1~3米秒、距离约100米时,追踪飞行器利用接近敏感器、摄像敏感器测量系统,进一步精确测量两个飞行器的相对速度、距离姿态,启动小发动使之沿对接走廊,向目标逼近。最后的对接停靠段:发动机在对接前关闭,并以015~018米/秒的停靠速度与目标相撞,最后利用栓-锥式或异体同构周边式对接装置,实现两个飞行器在结构上的硬连接,完成电源线、流体管线、信息传输总线的连接。

哪些国家实施了太空交会对接?

自20世纪60年代以来,航天器交会对接俄罗斯(苏联)进行的次数最多。俄罗斯加上美国、中国、日本等国共实施了300多次。俄罗斯、中国和美国有完全独立的空间交会对接技术。

人类首次载人空间交会对接是,美国航天员阿姆斯特朗和斯科特在1966年3月驾驶“双子星座8号”飞船,与当时经过改装的,火箭第三级无人舱体进行对接。“双子星座号”系列飞船从1964~1966年通过了10次载人飞行和2次无人对接,为多种交会对接方式和技术做出了验证,阿波罗探月活动的顺利进行也是源于这些验证。美国采用手动方式完成航天器的交会对接,主要考虑的是成本经济性、技术的把握性和安全可靠性等诸多因素。

俄罗斯(苏联)多采用自动对接技术。第一次无人航天器(完成于1967年)自动交会对接,由至今仍在服役的“联盟”飞船完成的。“进步号”货运飞船和“联盟”已经交会对接任务200多次。

交会对接也会发生故障,美国的“阿金纳”与“双子星座9号”对接时发生过故障;“阿波罗14号”在飞往月球过程中,直到第六次试接才获得成功。

1997年6月24日,俄罗斯的“进步M-34号”货运飞船脱离了“和平号”空间站对接口,次日该飞船飞回来想进行对接时,制动控制部件竟然失灵了,航天员的指令飞船没有做出响应,撞到了“和平号”的晶体舱上。2010年,俄罗斯的“国际空间站”与“进步M号”货运飞船对接时也以失败告终,改进措施后才获得成功。所以说,太空交接也需要经过试验才能获得成功。

本作品为“科普中国-科学原理一点通”原创 转载时务请注明出处

欢迎分享,转载请注明来源:表白网

原文地址:https://h5.hunlipic.com/xing/1481698.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-10-07
下一篇2023-10-07

发表评论

登录后才能评论

评论列表(0条)

    保存