从1962年起到当初,美国发射了哪三种型号的载人飞船?

从1962年起到当初,美国发射了哪三种型号的载人飞船?,第1张

1961年5月5日,美国第一位进行亚轨道飞行的航天员艾伦·B·谢泼德驾驶美国“水星”MR3飞船进行首次载人亚轨道飞行,美国因此成为继苏联之后世界上第二个具有载人航天能力的国家。

1962年2月20日,美国发射载人飞船“水星”6号,航天员欧约翰·H·格伦中校驾驶“水星”6号飞船绕地球飞行3圈,历时4小时55分23秒,在大西洋海面安全返回。格伦因此成为美国第一个进入地球轨道的人。

1965年3月23日,美国成功发射第二代载人飞船“双子星座”3号。飞船乘载着美国航天员格里索姆中校和约翰·杨少校,绕地球飞行5圈,历时4小时53分钟。这是美国首次载2人飞行。

1965年6月3日,美国发射载有航天员麦克迪维特上尉和怀特上尉的“双子星座”4号飞船,绕地球飞行62圈。怀特到舱外行走21分钟,用喷气装置使自己在太空中机动飞行。这是美国第一次太空行走。

1965年12月15日,美国发射“双子星座”6号飞船,飞船载有希拉中校和斯坦福尔德上尉。飞船绕地球飞行16圈,历时25小时51分钟。此次飞行是与12月4日发射的“双子星座”7号交会,并保持近距离编队飞行,最近时约03米。这是美国载人飞船第一次空间交会飞行。

1966年3月16日,美国发射载有航天员阿姆斯特朗和斯科特的“双子星座”8号,绕地球飞行65圈,历时10小时41分。飞行中首次实现载人飞船与一个名叫“阿金纳”的对接舱体对接。这是世界航天史上第一次空间对接。

1968年10月11日,美国发射“阿波罗”7号飞船。航天员希拉、艾西尔和坎宁哈姆绕地球飞行163圈,历时260小时9分钟,22日返回。这是“阿波罗”飞船的第一次载人地球轨道飞行。

1968年12月21日,美国发射载有波尔曼、洛弗尔和安德斯的“阿波罗”8号飞船。飞船进入距月面112公里的月球轨道上飞行了10圈,时间20小时6分钟,并向地球发回电视。27日返回。这是世界上第一艘绕月飞行的载人飞船。

1969年7月16日,美国发射“阿波罗”11号载人飞船,第一次把人送上月球。飞船上载有航天员阿姆斯特朗、科林斯、奥尔德林3名航天员,经过75小时50分钟的飞行后,进入环月轨道。7月21日格林尼治时间2时56分,航天员阿姆斯特朗将左脚踏到月球上,成为世界上第一个踏上月球的人,并说出了一句广为流传的名言:“这对一个人来说,只不过是小小的一步,可是对人类来讲,却是巨大的一步。”19分钟后,奥尔德林跟着也踏上了月球。他们在月面插上美国国旗,放置科学仪器,搜集22公斤月球岩石和土壤样品,共活动了2小时31分40秒。

1970年4月11日,美国发射载有航天员洛弗尔、海斯和斯威加特的“阿波罗”13号飞船进行第3次登月飞行。飞行56小时后,飞船离地球33万公里,差不多接近月球时,因两个钮扣大的恒温器开关故障,使服务舱燃烧电波贮氧箱爆炸,舱内许多设备遭损坏,氧气和水也损失过半,航天员洛弗尔、海斯和斯威加特面临葬身太空之灾。但他们临危不惧,按地面科学家们精确计算的轨道和地面指挥员的命令,手动操纵飞船,使用登月舱的氧气和动力,于4月17日成功地返回地球,创造了航天史上死里逃生的奇迹。

1971年12月7日,美国发射载有塞尔南、埃文斯和施密特的“阿波罗”17号飞船。11日到达月球,两名航天员在月面逗留75小时,在月球轨道上释放了一颗卫星。飞船19日返回。这是人类迄今最后一次载人登月飞行,也是“阿波罗”飞船第7次登月飞行。

1973年5月14日,美国用“土星”V火箭发射名为“天空实验室”的空间站。后与多艘“阿波罗”飞船对接,先后有3批9名航天员到其上工作。原预计“天空实验室”能运行到1982年,但终因空间站故障严重,无法正常使用,其运行轨道急剧下降,于1979年7月12日坠落于南印度洋澳大利亚西南水域。这是美国发射的第一个载人空间站。

1975年7月15日,苏、美发射飞船进行联合对接飞行。首先发射的是载有苏联航天员列昂诺夫和库巴索夫的“联盟”19号飞船。发射后75小时,美国“阿波罗”18号飞船载着美国航天员斯坦福尔德、斯莱顿和布兰德从肯尼迪航天中心发射成功。7月17日,“阿波罗”18号飞船和“联盟”19号飞船成功地对接。飞船对接状态保持了两天,美苏航天员实现了飞船间的互访。这是冷战期间美苏两个竞争对手难得的“太空握手”。

1981年4月12日,美国发射了世界上第一架航天飞机“哥伦比亚”号。此后又陆续建造了“挑战者”号、“亚特兰蒂斯”号、“发现”号和“奋进”号航天飞机。1986年1月28日,“挑战者”号航天飞机在发射升空仅73秒后即爆炸,机上7名航天员全部遇难;2003年2月1日,“哥伦比亚”号航天飞机在返航途中解体,机上7名航天员再次遇难。尽管如此,美国航天飞机投入运营22年来,已成功飞行111次,在太空部署过卫星、维修过“哈勃”、完成了无数科学试验,是目前正在建造中的国际空间站的主要运送工具。

1995年6月27日,美国“亚特兰蒂斯”号航天飞机载着5名美国航天员和2名俄罗斯航天员升空,首次实现与俄罗斯“和平”号空间站对接飞行。此后一直到1998年,美国航天飞机与俄罗斯“和平”号空间站进行了8次对接飞行,所取得的成功经验降低了目前正在组装的国际空间站装配和运行中的技术风险。

2001年4月28日,世界上首位太空游客、美国富翁蒂托搭乘“联盟”TM32号飞船从哈萨克斯坦拜科努尔航天发射场出发,到国际空间站上旅游观光8天,5月6日返回地面。蒂托此行耗资2000万美元,除了太空观光外,他还负责飞船的一部分无线电通信、导航和供电任务,并与俄宇航员一起执行了对地观测任务。蒂托的太空之旅开创了太空旅游的新时代。2002年4月25日~5月5日,世界上第二位太空游客、南非亿万富翁马克·沙特沃斯也在太空度过了10天的时光,其中8天生活和工作在国际空间站上。

大家平时有观看过科技频道吗中国发射的“神舟八号”“神舟九号”“神舟十号”与“天宫一号”大家应该都知道吧,可是大家知道他们为什么要在太空进行交会对接吗其中的原因是什么呢相信许多朋友们都不太了解,下面就由我来给大家解答一下疑惑吧。

由于科学研究的需要,空间站的尺寸十分巨大。例如,“国际空间站”由航天员居住舱、实验舱、服务舱、对接过渡舱、桁架、太阳翼等部分组成,长109米,宽(含翼展)73米,总质量约420吨。无论是什么型号的运载火箭,都不可能一次把数百吨的空间站运送到轨道上,所以只能将各舱段分批发射,然后在太空利用交会对接技术搭建起来。所以交会对接技术是建设空间站的基础。

在其他太空活动中,比如为长期在轨道上运行的空间站运送航天员和提供物资补给,或在轨航天器之间的互访、物资转运或紧急救生等,也要用到交会对接技术。在未来的深空探测等航天活动中,交会对接技术同样是不可或缺的。

航天器的交会对接是指两个航天器在空间轨道上会合并在结构上连成一个整体的技术,是实现空间站、航天飞机、太空平台和空间运输系统等的空间装配、回收、补给、维修、航天员交换及营救等在轨服务的先决条件。

在空间交会与对接的两个航天器中,一个称目标飞行器,一般是空间站或其他大型航天器,是准备对接的目标;另一个称追踪飞行器,一般是地面发射的宇宙飞船、航天飞机等,是与目标飞行器对接的航天器。例如“天宫一号”就是目标飞行器,而“神舟十号”就是追踪飞行器。

交会对接时,最主要的困难在于两个航天器都在以7千米每秒以上的速度运行,它们的相对位置和速度都必须精确控制,否则可能会彼此错过甚至追尾碰撞。

航天器执行交会对接,可分成四个步骤:远程导引段、近程导引段、最终逼近段和对接停靠段。在开始的远程导引段,在地面测控的支持下,追踪飞行器经过若干次变轨机动,进入到追踪飞行器上的敏感器能捕获目标飞行器的范围(一般为15~100千米)。在近程导引段,追踪飞行器根据自身的微波和激光敏感器测得的与目标飞行器的相对运动参数,自动引导到目标飞行器附近的初始瞄准点(距目标飞行器05~1千米)。进入最终逼近段,追踪飞行器首先捕获目标飞行器的对接轴,对接轴线不沿轨道飞行方向,要求追踪飞行器在轨道平面外进行绕飞机动,以进入对接走廊。此时,两个飞行器之间的距离约100米,相对速度约1~3米/秒。最后的对接停靠段,追踪飞行器利用由摄像敏感器和接近敏感器组成的测量系统精确测量两个飞行器的距离、相对速度和姿态,同时启动小发动机进行机动,使之沿对接走廊向目标最后逼近。在对接前关闭发动机,以015~018米/秒的停靠速度与目标相撞,最后利用栓—锥式或异体同构周边式对接装置,使两个飞行器在结构上实现硬连接,完成信息传输总线、电源线和流体管线的连接。

自20世纪60年代以来,美国、俄罗斯(苏联)、中国、日本等国总共实施了300多次航天器交会对接,其中俄罗斯(苏联)进行的次数最多。目前,完全独立拥有空间交会对接技术的国家有美国、俄罗斯和中国。

1966年3月,美国航天员阿姆斯特朗和斯科特驾驶“双子星座8号”飞船,与经过改装的一个火箭第三级无人舱体,进行了人类历史上首次载人空间交会对接。从1964年到1966年,“双子星座号”系列飞船通过了2次无人和10次 载人飞行,验证了多种交会对接方式和技术,为阿波罗探月活动的顺利进行做好了充分准备。美国航天器的交会对接多采用手动方式,这主要全面考虑技术的把握性、安全可靠性和成本经济性等诸多因素。

俄罗斯(苏联)是进行航天器交会对接最多的国家,多采用自动对接技术。1967年,第一次无人航天器自动交会对接就是由苏联的两艘“联盟”飞船完成的。“联盟”飞船至今仍在服役,它和“进步号”货运飞船已经执行过200多次交会对接任务。

与其他任务一样,交会对接也不能保证每次都获得成功。美国交会对接发生过两次故障:一次是“双子星座9号”与“阿金纳”目标飞行器对接时发生故障;另一次是“阿波罗14号”飞往月球过程中,在指令舱与登月舱对接时,由于对接机构材料原因,出现多次对接失败,直到第六次试接才获得成功。俄罗斯交会对接的失败给人们留下深刻印象。1997年6月24日,“进步M-34号”货运飞船脱离“和平号”空间站对接口,飞离了空间站一段距离,次日该飞船飞回来再次逼近空间站时,由于制动控制部件失灵,飞船没有及时对航天员指令做出响应,直接撞到“和平号”的“晶体”舱上。2010年,俄罗斯两艘“进步M号”货运飞船与“国际空间站”进行自动对接时也先后失败,后来采取了改进措施才获得成功。

飞船 发射日期 航天员 飞行时间 双子星3号 1965年03月23日 维吉尔·格里森、约翰·杨 4小时52分钟31秒 双子星4号 1965年06月03日 詹姆斯·麦克迪维特、爱德华·怀特 4天1小时56分钟2秒 双子星5号 1965年08月21日 戈尔登·库勃、皮特·康拉德 7天22小时55分钟14秒 双子星6A号 1965年12月15日 瓦尔特·施艾拉、托马斯·斯塔福德 1天1小时51分钟24秒 双子星7号 1965年12月04日 弗兰克·博尔曼、詹姆斯·洛威尔 13天18小时35分钟1秒 双子星8号 1966年03月16日 尼尔·阿姆斯特朗、大卫·斯科特 10小时41分钟26秒 双子星9A号 1966年06月03日 托马斯·斯塔福德、尤金·塞尔南 3天0小时20分钟50秒 双子星10号 1966年07月18日 约翰·杨、迈克尔·柯林斯 2天22小时46分钟39秒 双子星11号 1966年09月12日 皮特·康拉德、理查德·戈尔登 2天23小时17分钟8秒 双子星12号 1966年11月11日 吉姆·洛威尔、巴兹·奥尔德林 3天22小时34分钟31秒

“神舟十二号”与“天和”核心舱自主快速交会对接只需65小时

 “神舟十二号”与“天和”核心舱自主快速交会对接只需65小时,神舟十二号采用6小时的快速对接模式,比地球上绝大多数的快递要快得多,为什么可以这么快呢, 目前为止全世界在太空实施的对接已经超过500次,大多数美俄进行的。

“神舟十二号”与“天和”核心舱自主快速交会对接只需65小时1

 倒计时,我国又要发射载人飞船了!这次神舟十二号发射有一个亮点,那就是将采用快速对接模式,发射后6小时就可以实现与天和号的对接!

 神舟十二号任务

 2016年7月17日,神舟十一号成功发射,在7月19日实现天宫二号自动对接,用时2天。2021年4月23日美国发射的“奋进”号龙飞船,用了24小时才与国际空间站对接成功。神舟十二号采用6小时的快速对接模式,比地球上绝大多数的快递要快得多,为什么可以这么快呢?

 6小时快速对接模式是最快的吗?

 虽然我国航天对接已经进入6小时对接时代,但是还不是最快的。2021年4月9日发射的俄罗斯联盟飞船MS-18已经实现了3小时2分的超快对接模式,是历史上和空间站最快速的对接。

 联盟号飞船对接

 航天史上最快的对接记录

 俄罗斯联盟号3小时的超快模式是对接空间站最短的时间,但仍然不是世界上最快的太空交汇对接。

 1967年10月30日,俄罗斯两艘无人飞船186、188号实现了1小时8分的超快对接(飞船对接),这是人类史上航天器的首次自动对接,时间记录至今未被打破。

 俄罗斯火箭发射

 1966年3月16日,美国航天员阿姆斯特朗和斯科特乘坐“双子星座”8号飞船手动与“阿金纳”无人飞行器对接,是人类首次空间站对接。此外,美国双子座载人飞船创下了1小时34分的载人飞船对接记录。

 飞船是如何与空间站对接的?

 发射飞船和空间站对接,首先飞船发射时候需要和空间站同一个平面,这个一般是靠地球自转到达,所以这种发射有个时间窗口。

 飞船与空间站对接要解决的两个问题

 飞船发射入轨后,会先在更低的轨道开始绕地球运行,需要追上在更高轨道的空间站,就要解决高度差和相位差(角度差)两个问题,一般有两种方法:

 第一种是稳定轨道追逐法,飞船首先解决高度差问题,经过两次加速后达到和空间站同一轨道高度。然后经过多次减速,利用小轨道周期短办法缩短相位差,从而追上空间站。

 稳定轨道追逐法一

 稳定轨道追逐法二

 第二种是同椭圆轨道法,它是先调整角度、然后再调整高度,经过多次调轨,不断逼近空间站轨道。当两者轨道很接近的时候,再从空间站下方、后方缓慢变轨接近。这种方法耗时比较长,一般需要2~3天,但比较稳当。

 同椭圆轨道法

 俄罗斯超快速对接的原因一是国际空间站经过发射点上空时候开始发射,此时相位角差距最小。其次就是在飞行过程不做任何多余飞行,在飞船轨道绕行期间不绕完一圈就开始变轨,这样绕地球不到两圈就可以追上空间站。

 当然,俄罗斯的超快速对接原理看似很简单,但是要对轨道计算、飞船定位、加速增量等各种误差要计算非常精确,这不但需要很深厚的技术积累,还要有丰富的实践经验。

 变轨示意

 有哪些国家掌握天空对接技术?

 目前为止全世界在太空实施的对接已经超过500次,大多数美俄进行的。虽然距离首次对接已经过去了50多年,但世界上仍只有美、俄、中、欧空局及日本独立掌握太空对接技术。

 神舟十二号飞船6小时对接意义

 神舟十二号对接口

 我国神舟十二号飞船采用6小时快速对接模式,展示了我国在航天技术上的深厚积累,可以实施精度要求高、技术难度大的航天活动,也表明我国已经从航天大国开始变成航天强国。2021年5月29日发射的天舟二号货运飞船,也是采用6小时(实际8小时)的快速对接模式,可以说是为载人飞船预先进行了一次演练。

“神舟十二号”与“天和”核心舱自主快速交会对接只需65小时2

 大家有没有注意到,不论是神舟1号发射,还是现在神舟12号发射,都使用的是长征二号F火箭,长征二号F几乎成为了中国航天员的专用“座驾”,发射成功率为100%,那么我们就来了解一下为何长征二号F火箭如此优秀?

 长征二号F火箭全长5834米,由一,二子级结构组成,直径335米,助推器直径225米,整流罩直径38米,起飞质量4798吨,能一次性将84吨有效载荷送入近地轨道,长征二号F推进剂使用的是四氧化二氮和偏二甲肼,起飞推力为604387吨。

 最重要的是,长征二号F可靠性为097,安全性为0997,是我国所有型号火箭中可靠性和安全性最高的火箭,这就是为什么我国要把它作为神舟飞船和中国宇航员的专用“座驾”了。

 长征二号F共发射了15次,共17人次进入太空,神舟五号杨利伟,神舟六号费俊龙和聂海胜,神舟七号翟志刚、景海鹏和刘伯明,神舟九号景海鹏、刘旺和刘洋,神舟十号聂海胜、张晓光和王亚平,神舟十一号景海鹏和陈冬,神舟十二号聂海胜、刘伯明和汤洪波。

 神舟12号飞船正载着三名中国宇航员一步步地接近中国空间站,几个小时之就要与中国空间站交会对接了,届时,中国人将成为中国空间站的首批入住人员,我们终于圆了期待已久的“空间站梦想”。

 众所周知,以美国和俄罗斯为首打造的国际空间站已经运行20多年了,即说名字上带有“国际”两字,但实际上很不称职,美国一直阻止中国人入驻。

 但是现在,并不是我国羡慕美国,反而是美国羡慕我们,因为国际空间站已经衰老,2025年左右退役,而中国空间站才刚刚开始。

双子星座军阀这款游戏中,当玩家流程进行到一定的阶段之后就能够将飞船升级为护卫舰,以便玩家能够更好的进行游戏,但一些玩家不知道怎么升级,那么双子星座军阀怎么升级飞船呢?下面深空高玩就为大家带来双子星座军阀飞创升级护卫舰方法介绍,一起来看看吧。

双子星座军阀飞船升级护卫舰方法

升级到一定级别任务自动完成,想升级快去基地接日常任务做。

不同级别的船有等级限制, 天赋都有相应加点的,你看下那个加点的等级限制,就知道对应的船要几级了。

就是通过做任务攒钱,然后在基地的船坞里买更好的军舰即可。

双子星座军阀

“水星”号飞船

“水星”计划是美国1958年开始实施的第一个载人航天计划。鉴于当时与前苏联竞争的紧迫形势,该计划的基本指导思想是尽可能利用已经掌握的技术和成果,以最快的速度和简单可靠的方式抢先把人送上天。

“水星”号飞船计划的主要目的是把载1名航天员的飞船送入地球轨道,绕地球飞行几圈后安全返回地面。“水星”飞船计划始于1958年10月,结束于1963年5月。“水星”号飞船由圆台形座舱和圆柱形伞舱组成,共进行了25次飞行试验,其中6次载人。在经过了17次不载人飞行试验后,美国才于1961年5月5日进行了首次载人亚轨道飞行。载人亚轨道飞行试验成功后,美国于1962年2月20日进行了首次载人轨道飞行,绕地球3圈,飞行4小时55分钟后返回地面。

美国通过“水星”计划证明人能够在空间环境中生存和有效地驾驶飞船,也取得了载人飞船设计的初步经验。但是在这一回合的载人航天竞争中输给了前苏联,突出表现为载人上天的时间落后于前苏联,航天运载能力也处于劣势。

“双子星座”号飞船

继用“水星”号飞船完成了首次载人航天发射后,美国又开发了“双子星座”飞船,作为从“水星”到“阿波罗”计划之间的过渡。其主要任务是研究、发展载人登月的技术和训练航天员长时间飞行及舱外活动的能力。该计划历时5年,完成了10次环地轨道载人飞行,每次2人,共花费128亿美元。“双子星座”号飞船计划是为“阿波罗”号飞船计划提供飞行经验,准备各种技术条件,提供经过训练并富有实际飞行经验的航天员。“双子星座”号飞船计划始于1961年11月,结束于1966年11月。这期间共进行了12次飞行试验,其中2次不载人,10次载人。”双子星座“号飞船由再入舱和连接舱组成,其飞行试验重点解决了轨道交会、对接、航天员出舱活动和机动飞行变轨等技术问题。

“阿波罗”号飞船

经美国航宇局和冯·布劳恩等火箭专家论证,提出美国在20世纪60年代经过努力能够达到而又刚好超出前苏联的目标是载人登月。于是,美国总统肯尼迪于1961年5月25日宣布了“阿波罗”载人登月计划。

“阿波罗”号飞船由指挥舱、服务舱和登月舱组成。1969年7月16日,美国使用“土星”5号运载火箭将载有3名航天员的“阿波罗”11号飞船送入空间,7月21日飞船抵达月球,美国航天员阿姆斯特朗实现了人类登月的梦想。

美国为实施“阿波罗”计划还研制了“徘徊者”、“勘测者”、“月球轨道环行器”无人月球探测器、土星族重型运载火箭,以及由逃逸系统、指令舱、服务舱和登月舱组成的阿波罗飞船,这些工作为1969年把人送上月球奠定了坚实的技术基础。

“阿波罗”登月计划于1961年5月23日起开始实施,直至1972年12月结束。期间共进行了17次飞行试验,其中“阿波罗”1号至“阿波罗”6号为无人亚轨道与地球轨道飞行;“阿波罗”7号为载人地球轨道飞行;“阿波罗”8号和9号为载人月球轨道飞行、“阿波罗”11号至“阿波罗”17号为载人登月飞行(只有“阿波罗”13号失败)。“阿波罗”计划共花费240亿美元,先后完成6次登月飞行,把12人送上月球并安全返回地面。它不仅实现了美国赶超前苏联的政治目的,同时也带动了美国科学技术特别是推进、制导、结构材料、电子学和管理科学的发展。但是“阿波罗”计划耗资太大,几乎占用了航宇局20世纪60年代全部经费的3/5,严重影响了美国空间科学和空间应用领域的发展,迫使美国重新考虑下一步的航天目标。

“天空实验室”计划

在得知前苏联的“礼炮”1号空间站升空后,美国赶紧利用“阿波罗”计划剩余的土星运载火箭和载人飞船作为运输系统以及积累的技术成果,将“土星”5号运载火箭的末级改装成了美国第一个试验性空间站“天空实验室”。故此,“天空实验室”又称“阿波罗”应用计划。

1973年5月15日,“天空实验室”发射升空,开展试验性空间站活动,该空间站重82吨,长36米,容积316米3。该计划至1974年2月结束,耗资25亿美元,共完成3次载人活动。先后有9名航天员每批3人在此空间站上工作了18、59、84天,进行了天文观测、地球资源勘查、生物医学和材料加工等270项试验,突出显示了人在空间长期生活和从事检查、维修、排除故障和进行科研工作的能力。美国认为只是利用“阿波罗“计划的剩余材料便研制出了空间站,在技术上没有什么难度,同时也没有意识到空间站的潜在价值,加之美国认为研制兼具运载火箭和载人飞船性能的可重复使用的航天飞机更具潜力,至此美国转向了航天飞机的研制。直至20世纪80年代才重新提出研制“自由“号永久性载人空间站。

航天飞机

航天飞机是可重复使用的航天器,用于进入地球轨道,在地球与轨道航天器之间运送人员和物资,是人类首次研制的可重复使用往返于天地之间的运输系统。航天飞机还可用于在空间释放与维修人造卫星和空间探测器、地球资源勘探和环境监测、空间加工和科学试验、建造空间结构等方面。航天飞机是一种具有重要民用与军用价值的多用途航天器,它的出现是美国航天技术发展的一次飞跃。实现了航天运载器由一次使用向部分重复使用的过渡。

航天飞机由三部分组成,包括可重复使用100次的轨道器;一次性使用的外挂燃料箱;两个可回收的重复使用20次的固体火箭助推器。美国共制造了6架航天飞机,分别是“企业”号、“哥伦比亚”号、“挑战者”号、“发现”号、“阿特兰蒂斯”号和“奋进”号。其中“挑战者”号航天飞机在1986年1月28日的发射中爆炸,7名航天员全部遇难。

国际空间站

20世纪80年代初,为了迎接21世纪空间产业化和军事化的挑战,美国开始酝酿建造空间站。其主要目的是继续保持美国空间领先地位,推进空间产业开发,并为未来建立永久性月球基地和进行载人行星探索做准备。1984年1月25日,美国总统里根下令正式研制大型永久载人空间站,要求美国航宇局在10年内完成,耗资80亿美元,并邀请加拿大、西欧及日本等盟国参加空间站的建设。1988年2月,美国政府依据对国内国际形势的研究又颁发了新的空间政策,正式确定了扩大载人航天活动、实施月球和火星载人飞行长远目标。最初通过的空间站设计方案采用动力塔式双龙骨结构,由4个压力舱、4个能源舱、2个后勤舱、移动式遥控服务中心和4个自由飞行平台及轨道转移飞行器组成,电源系统由先进的太阳能发射镜提供87千瓦的功率。经过若干次改进,到1995年,国际空间站总重量为430吨,主桁架长88米,居住舱的容积为1200米3,4个太阳电池阵宽110米,能提供110千瓦的电源功率,其中用户使用功率为46千瓦。其运行高度平均为397公里。

宇宙飞船进入太空后,为了能更好地利用卫星,发展太空空间,科学家利用分级火箭,把卫星送入太空,再组装完善。

太空中飞船的交接有哪些仪式?

很多人关注“神舟八号”、“神舟九号”、“神舟十号”与“天宫一号”的成功交接,并引发为热门话题。对于航天器为什么要在太空中交会对接充满了好奇。

当初“阿波罗”飞船上的宇航员和“联盟”飞船宇航员在飞船对接成功后,激动地在太空握手是因为科学研究的需要。对接之后,空间站的尺寸就大了,它由航天员实验舱、居住舱、对接过渡舱、服务舱、太阳翼、桁架等组成。这么重的空间站,不管多少级的运载火箭都不能一次性发射到轨道上,只能分批发射,然后在太空完成交会对接,用各种技术手段搭建起来。这样,建设空间站的基础就是要有交会对接技术。

交会对接技术在提供物资补给,运送航天员、轨航天器之间的互访、物资转运或紧急救生中、未来的深空探测都是不能缺少的。

在空间轨道上会合后的两个航天器,在空间结构连接成整体的技术,就是航天器的交会对接。是实现航天飞机、太空平台、空间运输系统、空间站、空间装配、回收、补给、航天员交换、维修及营救等不能缺少的条件。

飞船在太空如何进行交会对接?

空间交会就是两个航天器在太空对接:分目标飞行器和追踪飞行器。在空间准备对接的大型航天器或空间站的目标,是目标飞行器;追踪飞行器是地面发射的航天飞机、宇宙飞船与目标飞行器对接的航天器。相对接成功的“神舟十号”是追踪飞行器,“天宫一号”是目标飞行器。交会对接时,两个航天器主要的困难是,要在以7千米每秒以上的速度运行还要精确控制对接,差一点就会错过或者追尾碰撞,造成不可挽回的损失。

太空交会对接可以分四个步骤:远程导引段、近程导引段、最终逼近段和对接停靠段。

追踪飞行器在地面测控的支持下,经过若干次变轨机动进入到追踪飞行器上,利用敏感器捕获目标飞行器,目标范围大致在15~100千米。这时的近程导引段、追踪飞行器会启动微波和激光敏感器,获得目标飞行器的运行参数,把目标飞行器自动引导至初始瞄准点,距离是05~1千米。追踪飞行器会主动捕获目标飞行器对接轴,进入最终逼近段,对接轴线并不是沿轨道飞行方向,而是让追踪飞行器进入对接走廊,在轨道平面外飞行器要进行绕飞。当两个飞行器相对速度约1~3米秒、距离约100米时,追踪飞行器利用接近敏感器、摄像敏感器测量系统,进一步精确测量两个飞行器的相对速度、距离姿态,启动小发动使之沿对接走廊,向目标逼近。最后的对接停靠段:发动机在对接前关闭,并以015~018米/秒的停靠速度与目标相撞,最后利用栓-锥式或异体同构周边式对接装置,实现两个飞行器在结构上的硬连接,完成电源线、流体管线、信息传输总线的连接。

哪些国家实施了太空交会对接?

自20世纪60年代以来,航天器交会对接俄罗斯(苏联)进行的次数最多。俄罗斯加上美国、中国、日本等国共实施了300多次。俄罗斯、中国和美国有完全独立的空间交会对接技术。

人类首次载人空间交会对接是,美国航天员阿姆斯特朗和斯科特在1966年3月驾驶“双子星座8号”飞船,与当时经过改装的,火箭第三级无人舱体进行对接。“双子星座号”系列飞船从1964~1966年通过了10次载人飞行和2次无人对接,为多种交会对接方式和技术做出了验证,阿波罗探月活动的顺利进行也是源于这些验证。美国采用手动方式完成航天器的交会对接,主要考虑的是成本经济性、技术的把握性和安全可靠性等诸多因素。

俄罗斯(苏联)多采用自动对接技术。第一次无人航天器(完成于1967年)自动交会对接,由至今仍在服役的“联盟”飞船完成的。“进步号”货运飞船和“联盟”已经交会对接任务200多次。

交会对接也会发生故障,美国的“阿金纳”与“双子星座9号”对接时发生过故障;“阿波罗14号”在飞往月球过程中,直到第六次试接才获得成功。

1997年6月24日,俄罗斯的“进步M-34号”货运飞船脱离了“和平号”空间站对接口,次日该飞船飞回来想进行对接时,制动控制部件竟然失灵了,航天员的指令飞船没有做出响应,撞到了“和平号”的晶体舱上。2010年,俄罗斯的“国际空间站”与“进步M号”货运飞船对接时也以失败告终,改进措施后才获得成功。所以说,太空交接也需要经过试验才能获得成功。

本作品为“科普中国-科学原理一点通”原创 转载时务请注明出处

人类首次太空行走为何如此惊心动魄?

上世纪五六十年代,前苏联和美国开展了激烈的太空竞赛,竞赛的核心内容就是第一个将人类送上月球。在这个过程中,需要解决载人航天的三大技术,也就是天地往返技术、交会对接技术和舱外活动技术。

1964年10月12日,“上升-1”号宇宙飞船发射升空,球形乘员舱直径与“东方”号飞船大体相同,改进之处是提高了舱体的密封性和可靠性。为了能容纳三名航天员,“上升”号飞船去掉了弹射座椅,换上了三个带有减震器的座椅,但即使这样,三位宇航员身着航天服也挤不进去,为此把航天服改成了普通的飞行服。

但是,采用普通飞行服也在后来付出了代价。1971年,“联盟-11”号宇宙飞船就是因为座舱失压,三名宇航员没有穿太空服导致他们在飞行中死亡。

1965年3月18日,“上升-2”号载着两名航天员——列昂诺夫和贝里亚耶夫,又完成了一次史无前例的创举:太空行走。太空行走是由列昂诺夫完成的,他通过气闸舱进入太空,靠一根5米长的绳子与飞船连在一起。返回飞船时,由于航天服在真空中膨胀起来,列昂诺夫怎么也无法通过舱口,经过了8分钟的挣扎他才回到飞船中。

太空行走又称为出舱活动,是载人航天的一项关键技术,是载人航天工程在轨道上安装大型设备、进行科学实验、施放卫星、检查和维修航天器的重要手段。要实现太空行走这一目标,需要诸多的特殊技术保障。

苏联人列昂诺夫完成历史性的太空行走三个月后,1965年6月3日,美国宇航员爱德华-怀特也实现了太空行走这一壮举,保护他的是一根8米长的绳子。怀特还在氧气推进剂的帮助下,做了单足旋转,此次太空行走持续了创纪录的23分钟。

除了舱外行走技术以外,交会对接技术则是由美国首先实现的。交会对接是指两个航天器,如宇宙飞船、航天飞机等在太空轨道上交会对接,合并成在结构上连成一体的航天器的过程。

1966年3月16日,美国航天员乘坐“双子星座-8”号飞船,手动操作交会过程,与无人“阿金纳”目标飞行器对接,实现了两个航天器之间的首次交会对接。

当然这个过程非常危险,在交会对接以后,整个飞行器出现了旋转,并且速度越来越快,甚至两位宇航员就要失去意识。这个时候,阿姆斯特朗非常沉着,他利用本用于返回地球的推进剂阻止了飞船的旋转,控制了整个飞行器。

而后,美国的“双子星座”飞船也进行了多次的交会对接,实现了人类对交会技术的熟练掌握。虽说前苏联率先掌握了人类进入太空的天地往返技术,率先进行了人类的首次出舱活动技术,但是实际上,美国的“双子星座”飞船通过“双子星座-3”号到“双子星座-12”号,这10次的载人飞行进行的多次舱外活动和交会对接,使美国在真正的技术实力和技术能力上甩开了前苏联,这也是后来美国在整个登月竞赛中取得成功、击败前苏联非常重要的原因。

欢迎分享,转载请注明来源:表白网

原文地址:https://h5.hunlipic.com/xing/1062784.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-09-07
下一篇2023-09-07

发表评论

登录后才能评论

评论列表(0条)

    保存