第一个重要极限和第二个重要极限公式是:
极限是微积分中的基础概念,它指的是变量在一定的变化过程中,从总的来说逐渐稳定的这样一种变化趋势以及所趋向的值(极限值)。
极限的概念最终由柯西和魏尔斯特拉斯等人严格阐述。在现代的数学分析教科书中,几乎所有基本概念(连续、微分、积分)都是建立在极限概念的基础之上。
极限的求法有很多种:
1、连续初等函数,在定义域范围内求极限,可以将该点直接代入得极限值,因为连续函数的极限值就等于在该点的函数值。
2、利用恒等变形消去零因子(针对于0/0型)。
3、利用无穷大与无穷小的关系求极限。
4、利用无穷小的性质求极限。
5、利用等价无穷小替换求极限,可以将原式化简计算。
6、利用两个极限存在准则,求极限,有的题目也可以考虑用放大缩小,再用夹逼定理的方法求极限。
将原积分化为三个积分的和,积分=∮e^zdz/2(z+1)+∮e^zdz/2(z-1)-∮e^zdz/z,由于这三个积分中被积函数的奇点z=-1z=1,z=0均在积分闭曲线内部,故根据柯西积分公式∮f(z)dz/(z-z0)=2πif(z0),积分=πi/e+eπi-2πi=πi(e+1/e-2)
3^n=(1+2)^n=1+n2+n(n-1)/22^2+>2n(n-1)
所以n/3^n<2/(n-1) lim n/3^n=0
原极限上下除以3^(2n+2) ,知极限=1/9
17、无穷小替换,x/2/(2x)=1/4
18、无穷小替换,1-cosx=05x^2,得到=sqrt(05)
21、(1+1/n)^n=e,因为(1+1/n)^m=1
欢迎分享,转载请注明来源:表白网
评论列表(0条)