大学常用极限公式有哪些

大学常用极限公式有哪些,第1张

极限公式:

1、e^x-1~x (x→0) 

2、 e^(x^2)-1~x^2 (x→0)

3、1-cosx~1/2x^2 (x→0)

4、1-cos(x^2)~1/2x^4 (x→0)

5、sinx~x (x→0)

6、tanx~x (x→0)

7、arcsinx~x (x→0)

8、arctanx~x (x→0)

9、1-cosx~1/2x^2 (x→0)

10、a^x-1~xlna (x→0)

11、e^x-1~x (x→0)

12、ln(1+x)~x (x→0)

13、(1+Bx)^a-1~aBx (x→0)

14、[(1+x)^1/n]-1~1/nx (x→0)

15、loga(1+x)~x/lna(x→0)

扩展资料:

高等数学极限中有“两个重要极限”的说法,指的是:

sinX/x →1( x→0 ),

与 (1+1/x)^x→e^x( x→∞)。

另外,关于等价无穷小,有:

sinx ~ tanx ~ arctanx ~ arcsinx ~ e^x-1 ~ ln(1+X)

~ (a^x-1)/lna ~[(1+x)^a-1]/a ~x( x→0),

1-cosx ~ x^2/2( x→0)。

limx→ 无穷常用公式是:

1、sinx~x、tanx~x、arcsinx~x、arctanx~x、1-cosx~(1/2)(x^2)~secx-1。

2、(a^x)-1~xlna [a^x-1)/x~lna]。

3、(e^x)-1~x、ln(1+x)~x。

4、(1+Bx)^a-1~aBx、[(1+x)^1/n]-1~(1/n)x、loga(1+x)~x/lna、(1+x)^a-1~ax(a≠0)。

在集合论中对无穷有不同的定义。德国数学家康托尔提出,对应于不同无穷集合的元素的个数(基数),有不同的“无穷”。

两个无穷大量之和不一定是无穷大,有界量与无穷大量的乘积不一定是无穷大(如常数0就算是有界函数),有限个无穷大量之积一定是无穷大。

题2,可以使用极限的重要公式,即lim(x→∞)(1+1/x)^x=e,得到其极限值

题3,可以使用极限的重要公式,即lim(x→∞)(1+1/x)^x=e,以及极限基本运算法则,得到其极限值

题4,可以直接将x=0代入 即可得到其极限值

计算过程如下

极限函数lim定义公式:

设{xn}为一个无穷实数数列的集合。如果存在实数a,对于任意正数ε (不论其多么小),都N>0,使不等式|xn-a|<ε在n∈(N,+∞)上恒成立,那么就称常数a是数列{xn} 的极限,或称数列{xn}收敛于a。

如果上述条件不成立,即存在某个正数ε,无论正整数N为多少,都存在某个n>N,使得|xn-a|≥a,就说数列{xn}不收敛于a。如果{xn}不收敛于任何常数,就称{xn}发散。

函数定义

函数(function)的定义通常分为传统定义和近代定义,函数的两个定义本质是相同的,只是叙述概念的出发点不同,传统定义是从运动变化的观点出发,而近代定义是从集合、映射的观点出发。

函数的近代定义是给定一个数集A,假设其中的元素为x,对A中的元素x施加对应法则f,记作f(x),得到另一数集B,假设B中的元素为y,则y与x之间的等量关系可以用y=f(x)表示,函数概念含有三个要素:定义域A、值域B和对应法则f。其中核心是对应法则f,它是函数关系的本质特征。

limx→ 无穷常用公式是:

1、sinx~x、tanx~x、arcsinx~x、arctanx~x、1-cosx~(1/2)(x^2)~secx-1。

2、(a^x)-1~xlna [a^x-1)/x~lna]。

3、(e^x)-1~x、ln(1+x)~x。

4、(1+Bx)^a-1~aBx、[(1+x)^1/n]-1~(1/n)x、loga(1+x)~x/lna、(1+x)^a-1~ax(a≠0)。

求极限方法:

利用函数的连续性求函数的极限(直接带入即可);利用两个重要极限求函数的极限;利用无穷小的性质求函数的极限,其中性质是有界函数与无穷小的乘积是无穷小,有限个无穷小相加、相减及相乘仍旧无穷小等等。

lim(f(x)+g(x))=limf(x)+limg(x)。

lim(f(x)g(x))=limf(x)limg(x)。

lim(f(x)-g(x))=limf(x)-limg(x)。

欢迎分享,转载请注明来源:表白网

原文地址:https://h5.hunlipic.com/biaobai/4111970.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2024-04-16
下一篇2024-04-16

发表评论

登录后才能评论

评论列表(0条)

    保存