1+sin2a=3-6sina×sina,求tana

1+sin2a=3-6sina×sina,求tana,第1张

齐次式求值

1+sin2a=3-6sina×sina

得[sinacosa+3(sina)^2]=1

即[sinacosa+3(sina)^2]/[(sina)^2+(cosa)^2]=1,

得(tana+3(tana)^2)/(tana)^2+1=1

得2(tana)^2+tana-1=0

tana=1/2或tana=-1

cosA=sinA 则说明tanA=1,

因此只有一三象限的角45°和225°的符合条件

再加上与这两个角终边相同的角的表示方法

加K360°就行了

也就是45°+K360°或225°+K360°

而45°+K360°=45°+2K180°

225°+K360°=(45°+180°)+K360°=45°+(2K+1)180°

观察两组值,一个加的是180°的奇数倍,另一个加的是180°的偶数倍,并起来应该是加180°的整数倍,也就是A=45°+K180°

回答完毕

2(sina-cosa)的最大值为2。2(sina-cosa)的最大值为2是因为正弦函数sina和余弦函数cosa的取值范围均在[-1,1]之间,那么sina-cosa的取值范围就在[-2,2]之间,因此当乘以2时,最大值也就是2。

三角函数是数学学习中非常重要的部分,那么三角函数公式有哪些呢,下面我为大家提供三角函数公式大全,仅供大家参考

三角函数差角公式有什么

三角函数差角公式又称三角函数的减法定理是几个角的和(差)的三角函数通过其中各个角的三角函数来表示的关系。

一般的最常用公式有:

二倍角公式

sin2a=2sinacosa

cos2a=cosa^2-sina^2

=1-2sina^2

=2cosa^2-1

tan2a=2tana/1-tana^2

三倍角公式

sin(3α) = 3sinα-4sin^3α = 4sinα·sin(π/3+α)sin(π/3-α)

cos(3α) = 4cos^3α-3cosα = 4cosα·cos(π/3+α)cos(π/3-α)tan(3α) = (3tanα-tan^3α)/(1-3tan^2α) = tanαtan(π/3+α)tan(π/3-α)

三角函数公式大全

锐角三角函数公式

sin α=∠α的对边 / 斜边

cos α=∠α的邻边 / 斜边

tan α=∠α的对边 / ∠α的邻边

cot α=∠α的邻边 / ∠α的对边

倍角公式

Sin2A=2SinACosA

Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1

tan2A=(2tanA)/(1-tanA^2)

(注:SinA^2 是sinA的平方 sin2(A) )

三倍角公式

sin3α=4sinα·sin(π/3+α)sin(π/3-α)

cos3α=4cosα·cos(π/3+α)cos(π/3-α)

tan3a = tan a · tan(π/3+a)· tan(π/3-a)

三倍角公式推导

sin3a

=sin(2a+a)

=sin2acosa+cos2asina

辅助角公式

Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中

sint=B/(A^2+B^2)^(1/2)

cost=A/(A^2+B^2)^(1/2)

tant=B/A

Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B

降幂公式

sin^2(α)=(1-cos(2α))/2=versin(2α)/2

cos^2(α)=(1+cos(2α))/2=covers(2α)/2

tan^2(α)=(1-cos(2α))/(1+cos(2α))

推导公式

tanα+cotα=2/sin2α

tanα-cotα=-2cot2α

1+cos2α=2cos^2α

1-cos2α=2sin^2α

1+sinα=(sinα/2+cosα/2)^2

=2sina(1-sina)+(1-2sina)sina

=3sina-4sina

cos3a

=cos(2a+a)

=cos2acosa-sin2asina

=(2cosa-1)cosa-2(1-sina)cosa

=4cosa-3cosa

sin3a=3sina-4sina

=4sina(3/4-sina)

=4sina[(√3/2)-sina]

=4sina(sin60°-sina)

=4sina(sin60°+sina)(sin60°-sina)

=4sina2sin[(60+a)/2]cos[(60°-a)/2]2sin[(60°-a)/2]cos[(60°-a)/2]

=4sinasin(60°+a)sin(60°-a)

cos3a=4cosa-3cosa

=4cosa(cosa-3/4)

=4cosa[cosa-(√3/2)]

=4cosa(cosa-cos30°)

=4cosa(cosa+cos30°)(cosa-cos30°)

=4cosa2cos[(a+30°)/2]cos[(a-30°)/2]{-2sin[(a+30°)/2]sin[(a-30°)/2]}

=-4cosasin(a+30°)sin(a-30°)

=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]

=-4cosacos(60°-a)[-cos(60°+a)]

=4cosacos(60°-a)cos(60°+a)

上述两式相比可得

tan3a=tanatan(60°-a)tan(60°+a)

半角公式

tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);

cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA

sin^2(a/2)=(1-cos(a))/2

cos^2(a/2)=(1+cos(a))/2

tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))

学习方法网[]

三角和

sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

两角和差

cos(α+β)=cosα·cosβ-sinα·sinβ

cos(α-β)=cosα·cosβ+sinα·sinβ

sin(α±β)=sinα·cosβ±cosα·sinβ

tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)

tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

和差化积

sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]

sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]

cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2]

cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]

tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)

tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)

积化和差

sinαsinβ = [cos(α-β)-cos(α+β)] /2

cosαcosβ = [cos(α+β)+cos(α-β)]/2

sinαcosβ = [sin(α+β)+sin(α-β)]/2

cosαsinβ = [sin(α+β)-sin(α-β)]/2

诱导公式

sin(-α) = -sinα

cos(-α) = cosα

tan (—a)=-tanα

sin(π/2-α) = cosα

cos(π/2-α) = sinα

sin(π/2+α) = cosα

cos(π/2+α) = -sinα

sin(π-α) = sinα

cos(π-α) = -cosα

sin(π+α) = -sinα

cos(π+α) = -cosα

tanA= sinA/cosA

tan(π/2+α)=-cotα

tan(π/2-α)=cotα

tan(π-α)=-tanα

tan(π+α)=tanα

诱导公式记背诀窍:奇变偶不变,符号看象限

万能公式

sinα=2tan(α/2)/[1+tan^(α/2)]

cosα=[1-tan^(α/2)]/1+tan^(α/2)]

tanα=2tan(α/2)/[1-tan^(α/2)]

其它公式

(1)(sinα)^2+(cosα)^2=1

(2)1+(tanα)^2=(secα)^2

(3)1+(cotα)^2=(cscα)^2

证明下面两式,只需将一式,左右同除(sinα)^2,第二个除(cosα)^2即可

(4)对于任意非直角三角形,总有

tanA+tanB+tanC=tanAtanBtanC

证它干什么,是定义,当然是旧教材中的,如果想证利用相似即可 y/r=y'/1=sinA(y'是A终边与单位圆交点) 书上仿佛有证明,你自己看看吧……

S△=c²sinAsinB/2sin(A+B)(S△为三角形的面积,三个角为∠A∠B∠C,对边分别为a,b,c,)S△=1/2acsinB=1/2bcsinA=1/2absinC (三个角为∠A∠B∠C,对边分别为a,b,c,参见三角函数)另外,当

证它干什么,是定义,当然是旧教材中的,如果想证利用相似即可 y/r=y'/1=sinA(y'是A终边与单位圆交点) 书上仿佛有证明,你自己看看吧……

S△=c²sinAsinB/2sin(A+B)(S△为三角形的面积,三个角为∠A∠B∠C,对边分别为a,b,c,)S△=1/2acsinB=1/2bcsinA=1/2absinC (三个角为∠A∠B∠C,对边分别为a,b,c,参见三角函数)另外,当

参考文档

参考文档

参考文档

参考文档

参考文档

参考文档

参考文档

参考文档

参考文档

参考文档

欢迎分享,转载请注明来源:表白网

原文地址:https://h5.hunlipic.com/biaobai/3833707.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2024-03-28
下一篇2024-03-28

发表评论

登录后才能评论

评论列表(0条)

    保存