数学王子 卡尔·弗里德里希·高斯

数学王子 卡尔·弗里德里希·高斯,第1张

社会在不断的进步和发展着,其中,科学便是一大助力。科学是一个很有意义的存在,它会以证据为前提,让人类得知一些神奇的认知。“科学家”这个词,令我们敬佩又膜拜!人类知识的进化,时代经济的发展都离不开科学家们的辛劳科研。接下来民族文化就为大家详细介绍为社会做了巨大贡献的世界十大科学家,一起来看看!

约翰·卡尔·弗里德里希·高斯是德国著名数学家、物理学家、天文学家、大地测量学家,近代数学奠基者之一。高斯被认为是历史上最重要的数学家之一,并享有“数学王子”之称。

高斯和阿基米德、牛顿、欧拉并列为世界四大数学家。一生成就极为丰硕,以他名字“高斯”命名的成果达110个,属数学家中之最。他对数论、代数、统计、分析、微分几何、大地测量学、地球物理学、力学、静电学、天文学、矩阵理论和光学皆有贡献。

数学成就

高斯已经指出,正三边形、正四边形、正五边形、正十五边形和边数是上述边数两倍的正多边形的几何作图是能够用圆规和直尺实现的,但从那时起关于这个问题的研究没有多大进展。高斯在数论的基础上提出了判断——给定边数的正多边形是否可以几何作图的准则。例如,用圆规和直尺可以作圆内接正十七边形。这样的发现还是欧几里得以后的第一个。

这些关于数论的工作对代数数的现代算术理论(即代数方程的解法)作出了贡献。高斯还将复数引进了数论,开创了复整数算术理论,复整数在高斯以前只是直观地被引进。1831年(发表于1832年)他给出了一个如何藉助于x,y平面上的表示来发展精确的复数理论的详尽说明。

高斯是最早怀疑欧几里得几何学是自然界和思想中所固有的那些人之一。欧几里得是建立系统性几何学的第一人。他模型中的一些基本思想被称作公理,它们是透过纯粹逻辑构造整个系统的出发点。在这些公理中,平行线公理一开始就显得很突出。按照这一公理,通过不在给定直线上的任何点只能作一条与该直线平行的线。

不久就有人推测︰这一公理可从其他一些公理推导出来,因而可从公理系统中删去。但是关于它的所有证明都有错误。高斯是最早认识到可能存在一种不适用平行线公理的几何学的人之一。

天文发现

1801年,天文界正在为火星和木星间庞大的间隙烦恼不已,认为火星和木星间应该还有行星未被发现。

1801年的元旦,一位意大利天文学家在西西里岛观察到在白羊座(Aries)附近有光度八等的星移动,这颗如今被称作谷神星(Ceres)的小行星在天空出现了41天,扫过八度角之后,就在太阳的光芒下没了踪影。

我们知道它是火星和木星的小行星带中的一个,当时天文学家无法确定这颗新星是彗星还是行星,必须继续观察才能判决,但是Piazzi只能观察到它9度的轨道,再来,它便隐身到太阳后面去了。因此无法知道它的轨道,也无法判定它是行星或彗星。

高斯也对这颗星着了迷,他决定解决这个捉摸不到的星体轨迹的问题。高斯自己独创了只要三次观察,就可以来计算星球轨道的方法。他可以极准确地预测行星的位置。他利用天文学家提供的观测资料,不慌不忙地算出了它的轨迹。

果然,谷神星准确无误的在高斯预测的地方出现。这个方法——虽然他当时没有公布——其实就是“最小平方法”。在天文学中这一成就立即得到公认。

他在《天体运动理论》(1809)中叙述的方法今天仍在使用,只要稍作修改就能适应现代计算机的要求。高斯在小行星「智神星」方面也获得类似的成功。考虑到其他行星对智神星轨道的摄动,高斯改进了他的计算。这时他的声名远播,荣誉滚滚而来。自那以后,行星、大行星(海王星)接二连三地被发现了。

高斯不仅对纯粹数学作出了意义深远的贡献,而且对20世纪的天文学、大地测量学和电磁学的实际应用也作出了重要的贡献。

高斯开辟了许多新的数学领域,从最抽象的代数数论到内蕴几何学,都留下了他的足迹。从研究风格、方法乃至所取得的具体成就方面,他都是18—19世纪之交的中坚人物。

如果我们把18世纪的数学家想象为一系列的高山峻岭,那么最后一个令人肃然起敬的巅峰就是高斯;如果把19世纪的数学家想象为一条条江河,那么其源头就是高斯。

高斯是"人类的骄傲"。天才、早熟、高产、创造力不衰……人类智力领域的几乎所有褒奖之词,对于高斯都不过分。

爱因斯坦曾评论说:“高斯对于近代物理学的发展,尤其是对于相对论的数学基础所作的贡献(指曲面论),其重要性是超越一切,无与伦比的。”

贝尔曾经这样评论高斯:在高斯死后,人们才知道他早就预见一些十九世纪的数学,而且在1800年之前已经期待它们的出现。如果他能把他所知道的一些东西泄漏,很可能比当今数学还要先进半个世纪或更多的时间。

欧拉1707年出生在瑞士的巴塞尔(Basel)城,13岁就进巴塞尔大学读书,得到当时最有名的数学家约翰·伯努利(Johann Bernoulli,1667-1748年)的精心指导

欧拉渊博的知识,无穷无尽的创作精力和空前丰富的著作,都是令人惊叹不已的!他从19岁开始发表论文,直到76岁,半个多世纪写下了浩如烟海的书籍和论文到今几乎每一个数学领域都可以看到欧拉的名字,从初等几何的欧拉线,多面体的欧拉定理,立体解析几何的欧拉变换公式,四次方程的欧拉解法到数论中的欧拉函数,微分方程的欧拉方程,级数论的欧拉常数,变分学的欧拉方程,复变函数的欧拉公式等等,数也数不清他对数学分析的贡献更独具匠心,《无穷小分析引论》一书便是他划时代的代表作,当时数学家们称他为"分析学的化身"

欧拉是科学史上最多产的一位杰出的数学家,据统计他那不倦的一生,共写下了886本书籍和论文,其中分析、代数、数论占40%,几何占18%,物理和力学占28%,天文学占11%,弹道学、航海学、建筑学等占3%,彼得堡科学院为了整理他的著作,足足忙碌了四十七年

欧拉著作的惊人多产并不是偶然的,他可以在任何不良的环境中工作,他常常抱着孩子在膝上完成论文,也不顾孩子在旁边喧哗他那顽强的毅力和孜孜不倦的治学精神,使他在双目失明以后,也没有停止对数学的研究,在失明后的17年间,他还口述了几本书和400篇左右的论文19世纪伟大数学家高斯(Gauss,1777-1855年)曾说:"研究欧拉的著作永远是了解数学的最好方法"

欧拉的父亲保罗·欧拉(Paul Euler)也是一个数学家,原希望小欧拉学神学,同时教他一点教学由于小欧拉的才人和异常勤奋的精神,又受到约翰·伯努利的赏识和特殊指导,当他在19岁时写了一篇关于船桅的论文,获得巴黎科学院的奖的奖金后,他的父亲就不再反对他攻读数学了

1725年约翰·伯努利的儿子丹尼尔·伯努利赴俄国,并向沙皇喀德林一世推荐了欧拉,这样,在1727年5月17日欧拉来到了彼得堡1733年,年仅26岁的欧拉担任了彼得堡科学院数学教授1735年,欧拉解决了一个天文学的难题(计算慧星轨道),这个问题经几个著名数学家几个月的努力才得到解决,而欧拉却用自己发明的方法,三天便完成了然而过度的工作使他得了眼病,并且不幸右眼失明了,这时他才28岁1741年欧拉应普鲁士彼德烈大帝的邀请,到柏林担任科学院物理数学所所长,直到1766年,后来在沙皇喀德林二世的诚恳敦聘下重回彼得堡,不料没有多久,左眼视力衰退,最后完全失明不幸的事情接踵而来,1771年彼得堡的大火灾殃及欧拉住宅,带病而失明的64岁的欧拉被围困在大火中,虽然他被别人从火海中救了出来,但他的书房和大量研究成果全部化为灰烬了

沉重的打击,仍然没有使欧拉倒下,他发誓要把损失夺回来在他完全失明之前,还能朦胧地看见东西,他抓紧这最后的时刻,在一块大黑板上疾书他发现的公式,然后口述其内容,由他的学生特别是大儿子A·欧拉(数学家和物理学家)笔录欧拉完全失明以后,仍然以惊人的毅力与黑暗搏斗,凭着记忆和心算进行研究,直到逝世,竟达17年之久

欧拉的记忆力和心算能力是罕见的,他能够复述年青时代笔记的内容,心算并不限于简单的运算,高等数学一样可以用心算去完成有一个例子足以说明他的本领,欧拉的两个学生把一个复杂的收敛级数的17项加起来,算到第50位数字,两人相差一个单位,欧拉为了确定究竟谁对,用心算进行全部运算,最后把错误找了出来欧拉在失明的17年中;还解决了使牛顿头痛的月离问题和很多复杂的分析问题

欧拉的风格是很高的,拉格朗日是稍后于欧拉的大数学家,从19岁起和欧拉通信,讨论等周问题的一般解法,这引起变分法的诞生等周问题是欧拉多年来苦心考虑的问题,拉格朗日的解法,博得欧拉的热烈赞扬,1759年10月2日欧拉在回信中盛称拉格朗日的成就,并谦虚地压下自己在这方面较不成熟的作品暂不发表,使年青的拉格朗日的工作得以发表和流传,并赢得巨大的声誉他晚年的时候,欧洲所有的数学家都把他当作老师,著名数学家拉普拉斯(Laplace)曾说过:"欧拉是我们的导师" 欧拉充沛的精力保持到最后一刻,1783年9月18日下午,欧拉为了庆祝他计算气球上升定律的成功,请朋友们吃饭,那时天王星刚发现不久,欧拉写出了计算天王星轨道的要领,还和他的孙子逗笑,喝完茶后,突然疾病发作,烟斗从手中落下,口里喃喃地说:"我死了",欧拉终于"停止了生命和计算"

欧拉的一生,是为数学发展而奋斗的一生,他那杰出的智慧,顽强的毅力,孜孜不倦的奋斗精神和高尚的科学道德,永远是值得我们学习的欧拉在数学上的建树很多,对著名的哥尼斯堡七桥问题的解答开创了图论的研究。欧拉还发现 ,不论什么形状的凸多面体,其顶点数v、棱数e、面数f之间总有v-e+f=2这个关系。v-e+f被称为欧拉示性数,成为拓扑学的基础概念。在数论中,欧拉首先引进了重要的欧拉函数φ(n),用多种方法证明了费马小定理。以欧拉的名字命名的数学公式、定理等在数学书籍中随处可见, 与此同时,他还在物理、天文、建筑以至音乐、哲学方面取得了辉煌的成就。〔欧拉还创设了许多数学符号,例如π(1736年),i(1777年),e(1748年),sin和cos(1748年),tg(1753年),△x(1755年),∑(1755年),f(x)(1734年)等

Leonhard Euler (pronounced Oiler; IPA [ˈɔʏlɐ]) (April 15, 1707 – September 18 [OS September 7] 1783) was a pioneering Swiss mathematician and physicist, who spent most of his life in Russia and Germany He published more papers than any other mathematician in history[1]

Euler made important discoveries in fields as diverse as calculus and topology He also introduced much of the modern mathematical terminology and notation, particularly for mathematical analysis, such as the notion of a mathematical function[2] He is also renowned for his work in mechanics, optics, and astronomy

Euler is considered to be the preeminent mathematician of the 18th century and one of the greatest of all time He is also one of the most prolific; his collected works fill 60–80 quarto volumes[3] A statement attributed to Pierre-Simon Laplace expresses Euler's influence on mathematics: "Read Euler, read Euler, he is a master for us all"[4]

Euler was featured on the sixth series of the Swiss 10-franc banknote[5] and on numerous Swiss, German, and Russian postage stamps The asteroid 2002 Euler was named in his honor He is also commemorated by the Lutheran Church on their Calendar of Saints on May 24

Contents [hide]

1 Biography

11 Childhood

12 St Petersburg

13 Berlin

14 Eyesight deterioration

15 Last stage of life

2 Contributions to mathematics

21 Mathematical notation

22 Analysis

23 Number theory

24 Graph theory

25 Applied mathematics

26 Physics and astronomy

27 Logic

3 Philosophy and religious beliefs

4 Selected bibliography

5 See also

6 Notes

7 Further reading

8 External links

[edit] Biography

[edit] Childhood

Swiss 10 Franc banknote honoring Euler, the most successful Swiss mathematician in historyEuler was born in Basel to Paul Euler, a pastor of the Reformed Church, and Marguerite Brucker, a pastor's daughter He had two younger sisters named Anna Maria and Maria Magdalena Soon after the birth of Leonhard, the Eulers moved from Basel to the town of Riehen, where Euler spent most of his childhood Paul Euler was a family friend of the Bernoullis, and Johann Bernoulli, who was then regarded as Europe's foremost mathematician, would eventually be an important influence on the young Leonhard His early formal education started in Basel, where he was sent to live with his maternal grandmother At the age of thirteen he matriculated at the University of Basel, and in 1723, received a masters of philosophy degree with a dissertation that compared the philosophies of Descartes and Newton At this time, he was receiving Saturday afternoon lessons from Johann Bernoulli, who quickly discovered his new pupil's incredible talent for mathematics[6]

Euler was at this point studying theology, Greek, and Hebrew at his father's urging, in order to become a pastor Johann Bernoulli intervened, and convinced Paul Euler that Leonhard was destined to become a great mathematician In 1726, Euler completed his PhD dissertation on the propagation of sound with the title De Sono[7] and in 1727, he entered the Paris Academy Prize Problem competition, where the problem that year was to find the best way to place the masts on a ship He won second place, losing only to Pierre Bouguer—a man now known as "the father of naval architecture" Euler, however, would eventually win the coveted annual prize twelve times in his career[8]

[edit] St Petersburg

Around this time Johann Bernoulli's two sons, Daniel and Nicolas, were working at the Imperial Russian Academy of Sciences in St Petersburg In July 1726, Nicolas died of appendicitis after spending a year in Russia, and when Daniel assumed his brother's position in the mathematics/physics division, he recommended that the post in physiology that he had vacated be filled by his friend Euler In November 1726 Euler eagerly accepted the offer, but delayed making the trip to St Petersburg In the interim he unsuccessfully applied for a physics professorship at the University of Basel[9]

1957 stamp of the former Soviet Union commemorating the 250th birthday of Euler The text says: 250 years from the birth of the great mathematician and academician, Leonhard EulerEuler arrived in the Russian capital on May 17, 1727 He was promoted from his junior post in the medical department of the academy to a position in the mathematics department He lodged with Daniel Bernoulli with whom he often worked in close collaboration Euler mastered Russian and settled into life in St Petersburg He also took on an additional job as a medic in the Russian Navy[10]

The Academy at St Petersburg, established by Peter the Great, was intended to improve education in Russia and to close the scientific gap with Western Europe As a result, it was made especially attractive to foreign scholars like Euler: the academy possessed ample financial resources and a comprehensive library drawn from the private libraries of Peter himself and of the nobility Very few students were enrolled in the academy so as to lessen the faculty's teaching burden, and the academy emphasized research and offered to its faculty both the time and the freedom to pursue scientific questions[8]

However, the Academy's benefactress, Catherine I, who had attempted to continue the progressive policies of her late husband, died the day of Euler's arrival The Russian nobility then gained power upon the ascension of the twelve-year-old Peter II The nobility were suspicious of the academy's foreign scientists, and thus cut funding and caused numerous other difficulties for Euler and his colleagues

Conditions improved slightly upon the death of Peter II, and Euler swiftly rose through the ranks in the academy and was made professor of physics in 1731 Two years later, Daniel Bernoulli, who was fed up with the censorship and hostility he faced at St Petersburg, left for Basel Euler succeeded him as the head of the mathematics department[11]

On January 7, 1734, he married Katharina Gsell, daughter of a painter from the Academy Gymnasium The young couple bought a house by the Neva River, and had thirteen children, of whom only five survived childhood[12]

[edit] Berlin

Stamp of the former German Democratic Republic honoring Euler on the 200th anniversary of his death In the middle, it is showing his polyhedral formulaConcerned about continuing turmoil in Russia, Euler debated whether to stay in St Petersburg or not Frederick the Great of Prussia offered him a post at the Berlin Academy, which he accepted He left St

高斯是一对贫穷夫妇的唯一的儿子。母亲是一个贫穷石匠的女儿,虽然十分聪明,但却没有接受过教育。在她成为高斯父亲的第二个妻子之前,她从事女佣工作。他的父亲曾做过园丁,工头,商人的助手和一个小保险公司的评估师。

当高斯三岁时便能够纠正他父亲的借债账目的事情,已经成为一个轶事流传至今。他曾说,他在麦仙翁堆上学会计算。能够在头脑中进行复杂的计算,是上帝赐予他一生的天赋。

父亲格尔恰尔德·迪德里赫对高斯要求极为严厉,甚至有些过分。高斯尊重他的父亲,并且秉承了其父诚实、谨慎的性格。高斯很幸运地有一位鼎力支持他成才的母亲。高斯一生下来,就对一切现象和事物十分好奇,而且决心弄个水落石出,这已经超出了一个孩子能被许可的范围。当丈夫为此训斥孩子时,她总是支持高斯,坚决反对顽固的丈夫想把儿子变得跟他一样无知。

在成长过程中,幼年的高斯主要得力于他的母亲罗捷雅和舅舅弗利德里希(Friederich)。弗利德里希富有智慧,为人热情而又聪明能干投身于纺织贸易颇有成就。他发现姐姐的儿子聪明伶利,因此他就把一部分精力花在这位小天才身上,用生动活泼的方式开发高斯的智力。

若干年后,已成年并成就显赫的高斯回想起舅舅为他所做的一切,深感对他成才之重要,他想到舅舅多产的思想,不无伤感地说,舅舅去世使我们失去了一位天才。正是由于弗利德里希慧眼识英才,经常劝导姐夫让孩子向学者方面发展,才使得高斯没有成为园丁或者泥瓦匠。

罗捷雅真的希望儿子能干出一番伟大的事业,对高斯的才华极为珍视。然而,她也不敢轻易地让儿子投入不能养家糊口的数学研究中。在高斯19岁那年,尽管他已做出了许多伟大的数学成就,但她仍向数学界的朋友W波尔约问道:高斯将来会有出息吗?波尔约说她的儿子将是欧洲最伟大的数学家,为此她激动得热泪盈眶。 高斯7岁那年开始上学。10岁的时候,他进入了学习数学的班级,这是一个首次创办的班,孩子们在这之前都没有听说过算术这么一门课程。数学教师是布特纳,他对高斯的成长也起了一定作用。

一天,老师布置了一道题,1+2+3······这样从1一直加到100等于多少。

高斯很快就算出了答案,起初高斯的老师布特纳并不相信高斯算出了正确答案:你一定是算错了,回去再算算。”高斯说出答案就是5050,高斯是这样算的1+100=101,2+99=101······1加到100有50组这样的数,所以50X101=5050。

布特纳对他刮目相看。他特意从汉堡买了最好的算术书送给高斯,说:“你已经超过了我,我没有什么东西可以教你了。”接着,高斯与布特纳的助手巴特尔斯建立了真诚的友谊,直到巴特尔斯逝世。他们一起学习,互相帮助,高斯由此开始了真正的数学研究。 1788年,11岁的高斯进入了文科学校,他在新的学校里,所有的功课都极好,特别是古典文学、数学尤为突出。他的教师们和慈母把他推荐给伯伦瑞克公爵,希望公爵能资助这位聪明的孩子上学。

布伦兹维克公爵卡尔·威廉·斐迪南召见了14岁的高斯。这位朴实、聪明但家境贫寒的孩子赢得了公爵的同情,公爵慷慨地提出愿意作高斯的资助人,让他继续学习。

1792年高斯进入布伦兹维克的卡罗琳学院继续学习。1795年,公爵又为他支付各种费用,送他入德国著名的哥丁根大学,这样就使得高斯得以按照自己的理想,勤奋地学习和开始进行创造性的研究。

1796年高斯19岁,发现了正十七边形的尺规作图法, 解决了自欧几里德以来悬而未决的一个难题。 同年,发表并证明了二次互反律。这是他的得意杰作,一生曾用八种方法证明,称之为“黄金律” 。

1799年,高斯完成了博士论文,获黑尔姆施泰特大学的博士学位,回到家乡布伦兹维克,虽然他的博士论文顺利通过了,被授予博士学位,同时获得了讲师职位,但他没有能成功地吸引学生,因此只能回老家-又是公爵伸手救援他。

公爵继续慷慨资助高斯的研究,使得他能在1803年谢绝圣彼得堡提供的教授职位,他一直是圣彼得堡科学院通讯院士。

公爵为高斯付诸了长篇博士论文的印刷费用,送给他一幢公寓,又为他印刷了《算术研究》,使该书得以在1801年问世;还负担了高斯的所有生活费用。所有这一切,令高斯十分感动。他在博士论文和《算术研究》中,写下了情真意切的献词:献给大公,你的仁慈,将我从所有烦恼中解放出来,使我能从事这种独特的研究。

布伦兹维克公爵在高斯的成才过程中起了举足轻重的作用。不仅如此,这种作用实际上反映了欧洲近代科学发展的一种模式,表明在科学研究社会化以前,私人的资助是科学发展的重要推动因素之一。高斯正处于私人资助科学研究与科学研究社会化的转变时期。 1806年,卡尔·威廉·斐迪南公爵在抵抗拿破仑统帅的法军时不幸在耶拿战役阵亡,这给高斯以沉重打击。他悲痛欲绝,长时间对法国人有一种深深的敌意。大公的去世给高斯带来了经济上的拮据,德国处于法军奴役下的不幸,以及第一个妻子的逝世,这一切使得高斯有些心灰意冷。

但他是位刚强的汉子,从不向他人透露自己的窘况,也不让朋友安慰自己的不幸。人们只是在19世纪整理他的未公布于众的数学手稿时才得知他那时的心态。在一篇讨论椭圆函数的手稿中,突然插入了一段细微的铅笔字:对我来说,死去也比这样的生活更好受些。

慷慨、仁慈的资助人去世了,因此高斯必须找一份合适的工作,以维持一家人的生计。由于高斯在天文学、数学方面的杰出工作,他的名声从1802年起就已开始传遍欧洲。彼得堡科学院不断暗示他,自从1783年莱昂哈德·欧拉去世后,欧拉在彼得堡科学院的位置一直在等待着像高斯这样的天才。公爵在世时坚决劝阻高斯去俄国,他甚至愿意给高斯增加薪金,为他建立天文台。

为了不使德国失去最伟大的天才,德国著名学者洪堡(BAVon Humboldt)联合其他学者和政界人物,为高斯争取到了享有特权的哥廷根大学数学和天文学教授,以及哥廷根天文台台长的职位。1807年,高斯赴哥廷根就职,全家迁居于此。

从这时起,除了一次到柏林去参加科学会议以外,他一直住在哥廷根。洪堡等人的努力,不仅使得高斯一家人有了舒适的生活环境,高斯本人可以充分发挥其天才,而且为哥廷根数学学派的创立、德国成为世界科学中心和数学中心创造了条件。同时,这也标志着科学研究社会化的一个良好开端。 1833年高斯从他的天文台拉了一条长八千尺的电线,跨过许多人家的屋顶,一直到韦伯的实验室,以伏特电池为电源,构造了世界第一个电报机。

高斯对自己的工作态度是精益求精,非常严格地要求自己的研究成果。他自己曾说:宁可发表少,但发表的东西是成熟的成果。许多当代的数学家要求他,不要太认真,把结果写出来发表,这对数学的发展是很有帮助的。

其中一个有名的例子是关于非欧几何的发展。非欧几何的的开山祖师有三人,高斯、 洛巴切夫斯基,波尔约。其中波尔约的父亲是高斯大学的同学,他曾想试着证明平行公理,虽然父亲反对他继续从事这种看起来毫无希望的研究,小波尔约还是沉溺于平行公理。最后发展出了非欧几何,并且在1832~1833年发表了研究结果,老波尔约把儿子的成果寄给老同学高斯,想不到高斯却回信道:我无法夸赞他,因为夸赞他就等于夸奖我自己。

早在几十年前,高斯就已经得到了相同的结果,只是怕不能为世人所接受而没有公布而已。阿贝尔和雅可比可以从高斯所停留的地方开始工作,而不是把他们最好的努力花在发现高斯早在他们出生时就知道的东西。而那些非欧几何学的创造者,可以把他们的天才用到其他方面去。

他越来越多的学生成为有影响的数学家,如后来闻名于世的戴德金和黎曼。

他的父亲死于1808年4月14日,1809年10月11日,他的第一位妻子Johanna也离开人世。次年8月4日高斯迎娶第二位妻子Friederica Wilhelmine (1788-1831)。他们又有三个孩子:Eugen (1811-1896),Wilhelm (1813-1883) 和 Therese (1816-1864)。1831年9月12日她的第二位妻子也死去,1837年高斯开始学习俄语。1839年4月18日,他的母亲在哥廷根逝世,享年95岁。高斯于1855年2月23日凌晨1点在哥廷根去世。他的很多散布在给朋友的书信或笔记发现于1898年。 高斯的信仰是基于寻求真理的。他相信“精神个性上的不朽,像是个人在死后的持久性,还有最后命令的东西,以及永恒的、正义的、无所不知和无所不能的上帝。”高斯也坚持宗教的宽容,他相信打扰其他正处在他们自己和平信念中的人是不对的。 他说:”微小的学识使人远离神,广博的学识使人接近神。“

高斯具有浓厚的宗教感情、贵族的举止和保守的倾向。他一直远离他那个时代的进步政治潮流。在高斯身上表现出的矛盾是与他实际上的和谐结合在一起的。高斯身为才气横溢的算术家,对於数具有非凡的记忆力。他既是一个深刻的理论家,又是一个杰出的数学实践家。教学是他最讨厌的事,因此他只有少数几个学生。但他的那些影响数学发展进程的论著(大约155篇)却使他呕心沥血。有3个原则指导他的工作︰他最喜欢说的「少些,但要成熟些」;他的格言「不留下进一步要做的事」;和他的极度严格的要求。

从他死后出版的著作中可以看出,他有许多重要和内容广泛的论文从未发表,因为按他的意见,它们都不符合这些原则。高斯所追求的数学研究题目都是那些他能在其中预见到具有某种有意义联系的概念和结果,它们由於优美和普遍而值得称道。 欧几里德已经指出,正三边形、正四边形、正五边形、正十五边形和边数是上述边数两倍的正多边形的几何作图是能够用圆规和直尺实现的,但从那时起关于这个问题的研究没有多大进展。高斯在数论的基础上提出了判断一给定边数的正多边形是否可以几何作图的准则。例如,用圆规和直尺可以作圆内接正十七边形。这样的发现还是欧几里得以后的第一个。

这些关於数论的工作对代数数的现代算术理论(即代数方程的解法)作出了贡献。高斯还将复数引进了数论,开创了复整数算术理论,复整数在高斯以前只是直观地被引进。1831年(发表於1832年)他给出了一个如何藉助於x,y平面上的表示来发展精确的复数理论的详尽说明。

高斯是最早怀疑欧几里得几何学是自然界和思想中所固有的那些人之一。欧几里得是建立系统性几何学的第一人。他模型中的一些基本思想被称作公理,它们是透过纯粹逻辑构造整个系统的出发点。在这些公理中,平行线公理一开始就显得很突出。按照这一公理,通过不在给定直线上的任何点只能作一条与该直线平行的线。

不久就有人推测︰这一公理可从其他一些公理推导出来,因而可从公理系统中删去。但是关於它的所有证明都有错误。高斯是最早认识到可能存在一种不适用平行线公理的几何学的人之一。他逐渐得出革命性的结论︰确实存在这样的几何学,其内部相容并且没有矛盾。但因为与同代人的观点相背,他不敢发表(参阅非欧几里得几何条)。

当1830年前后匈牙利的波尔约(Janos Bolyai)和俄国的罗巴切夫斯基独立地发表非欧几何学时,高斯宣称他大约在30年前就得到同样的结论。高斯也没有发表特殊复函数方面的工作,可能是因为没有能从更一般的原理导出它们。因此这一理论不得不在他死后数十年由其他数学家从他著作的计算中重建。

1830年前后,极值(极大和极小)原理在高斯的物理问题和数学研究中开始占有重要地位,例如流体保持静止的条件等问题。在探讨毛细作用时,他提出了一个数学公式能将流体系统中一切粒子的相互作用、引力以及流体粒子和与它接触的固体或流体粒子之间的相互作用都考虑在内。这一工作对於能量守恒原理的发展作出了贡献。从1830年起高斯就与物理学家威廉·爱德华·韦伯密切合作。由於对地磁学的共同兴趣,他们一起建立了一个世界性的系统观测网。他们在电磁学方面最重要的成果是电报的发展。因为他们的资金有限,所以试验都是小规模的。 1801天文界正在为火星和木星间庞大的间隙烦恼不已,认为火星和木星间应该还有行星未被发现。

1801年的元旦,一位意大利天文学家在西西里岛观察到在白羊座(Aries)附近有光度八等的星移动,这颗如今被称作谷神星(Ceres)的小行星在天空出现了41天,扫过八度角之后,就在太阳的光芒下没了踪影。

我们知道它是火星和木星的小行星带中的一个,当时天文学家无法确定这颗新星是彗星还是行星,必须继续观察才能判决,但是Piazzi只能观察到它9度的轨道,再来,它便隐身到太阳后面去了。因此无法知道它的轨道,也无法判定它是行星或彗星。

高斯也对这颗星着了迷,他决定解决这个捉摸不到的星体轨迹的问题。高斯自己独创了只要三次观察,就可以来计算星球轨道的方法。他可以极准确地预测行星的位置。他利用天文学家提供的观测资料,不慌不忙地算出了它的轨迹。

果然,谷神星准确无误的在高斯预测的地方出现。这个方法--虽然他当时没有公布--就是“最小平方法”。在天文学中这一成就立即得到公认。

他在《天体运动理论》(1809)中叙述的方法今天仍在使用,只要稍作修改就能适应现代计算机的要求。高斯在小行星「智神星」方面也获得类似的成功。考虑到其他行星对智神星轨道的摄动,高斯改进了他的计算。 这时他的声名远播,荣誉滚滚而来。自那以后,行星、大行星(海王星)接二连三地被发现了。

1807年他成为格丁根大学的天文学教授和新天文台台长,直到逝世。1809年,在结婚4年后和第三个孩子刚出世不久,他第一个妻子去世。他的第二次婚姻(1810~1831)带给他两个儿子和一个女儿。

在1812年,他研究了超几何级数,并且把研究结果写成专题论文,呈给哥廷根皇家科学院。 1820年前后,高斯把注意力转向大地测量——用数学方法测定地球表面的形状和大小。他把很多时间用於大地测量的理论研究和野外工作。

为了增加测量的精确度,他发明了回光仪(一种利用日光以保证比较精确测量的仪器)。他还引进了所谓的高斯误差曲线,并指出概率如何能用变差的钟形曲线(一般称为正态曲线,它是刻画数据统计分布的基础)来表示。

他还对透过实际的大地测量确定地球形状感兴趣,这个工作使他回到了纯理论。他利用这些测量数据发展了曲面论,按照这一理论,一个曲面的特徵只要透过测量曲面上曲线的长度就能确定。

这种「内蕴曲面论」启发了他的学生黎曼发展三维或多维空间的一般内蕴几何学。这是黎曼1854年在格丁根就职演说的题目,据说也是困扰高斯的问题。大约60年以后黎曼的思想形成爱因斯坦广义相对论的数学基础。

与他在引力和磁学方面的兴趣有密切关系的是他在1840年发表的实分析论文。这一论文成为现代位势理论的出发点。这可能是他所有的工作中唯一没有达到他本人高标准要求的一个。只有到20世纪初数学家在不同原理的基础上或藉助於寻求高斯结论是完全正确的成立条件,才有可能重新发展位势理论。

1820到1830年间,高斯为了测绘汗诺华公国的地图,开始做测地的工作,他写了关于测地学的书,由于测地上的需要,他发明了日观测仪。高斯和韦伯(Withelm Weber)一起从事磁的研究,他们的合作是很理想的:韦伯作实验,高斯研究理论,韦伯引起高斯对物理问题的兴趣,而高斯用数学工具处理物理问题,影响韦伯的思考工作方法。以伏特电池为电源,构造了世界第一个电报机,设立磁观测站,和韦伯画出了世界第一张地球磁场图,而且定出了地球磁南极和磁北极的位置。 高斯的数学研究几乎遍及所有领域,在数论、代数学、非欧几何、复变函数和微分几何等方面都做出了开创性的贡献。他还把数学应用于天文学、大地测量学和磁学的研究,发明了最小二乘法原理。高斯一生共发表155篇论文,他对待学问十分严谨,只是把他自己认为是十分成熟的作品发表出来。

高斯首先迷恋上的也是自然数。高斯在1808年谈到:“任何一个花过一点功夫研习数论的人,必然会感受到一种特别的激情与狂热。”

高斯对代数学的重要贡献是证明了代数基本定理,他的存在性证明开创了数学研究的新途径。事实上在高斯之前有许多数学家认为已给出了这个结果的证明,可是没有一个证明是严密的。高斯把前人证明的缺失一一指出来,然后提出自己的见解,他一生中一共给出了四个不同的证明。高斯在1816年左右就得到非欧几何的原理。他还深入研究复变函数,建立了一些基本概念发现了著名的柯西积分定理。他还发现椭圆函数的双周期性,但这些工作在他生前都没发表出来。

在物理学方面高斯最引人注目的成就是在1833年和物理学家韦伯发明了有线电报,这使高斯的声望超出了学术圈而进入公众社会。除此以外,高斯在力学、测地学、水工学、电动学、磁学和光学等方面均有杰出的贡献。 著作  出版时间著作介绍《算术研究》1801年介绍了同余、二次互逆定理  《天体运动理论》1809年天体运动的著作 《曲面的一般研究》1827年  阐述了空间曲面的微积分几何学关于代数基本定理的博士论文1799年证明了每个复系数方程必有复数解《高等大地测量学理论》上1843/44年地理测量《高等大地测量学理论》下1846/47年地理测量《地磁的一般理论》 1839年 《地磁概念》 1840年 《论与距离平方成反比的引力和斥力的普遍定律》 1840年

  蛇姬之鳞

  会长

  老妇婆婆 “蛇姬之鳞”公会会长,一个老婆婆,平时一副很啰嗦的样子,实力深不可测。 于X791年出现的人物,由于每一年“蛇姬之鳞”公会在“大魔斗演武”比赛中都只能得到第二名,所以命令鸠拉和利昂都要在今年出场比赛。

  S级魔导士

  “岩铁”裘拉·雷基斯 “蛇姬之鳞”公会的精英,圣十大魔导之一。 他使用的土系魔法力量十分强大,能把柔软的碎砂变得坚硬如铁(更难能可贵的是超高的操控力),因而得到“岩铁”的称号,实际上除了土系魔法力量外,本身就拥有非常强大的魔力。 在小裘拉的时候,一次在家里正在津津有味地品尝豌豆时,突然间一条青虫钻进了口中,从那以后,一直痛恨着青豌豆。 深爱着自己的公会,他也十分疼爱利昂和雪莉等成员。 加入联合军讨伐巴拉姆联盟之一的黑暗公会“六魔将军”,与被涅槃转化为善的“天眼”禾特艾搭档,后与“首脑”布莱恩展开激战,最后以“霸王岩碎”将其击败。 七年之后长了很长的胡子,与利昂等人来探望七年后归来的马卡洛夫等人,并告知马卡洛夫关于魔法评议会跟圣十大魔导的事情。 “零帝”利昂·巴斯提亚 蛇姬之鳞”成员之一,一个银发以及性格冷酷的帅哥,童年跟随自己的师傅乌鲁学习造冰魔法,在一次偶然的机会,他和师傅发现年幼的格雷,而且成为师兄弟,从小就一直梦想着超越师傅,认为世上没有比乌鲁更加强大的魔导师才拜乌鲁为师,与格雷擅长的造出枪盾等物品的“静态”造冰魔法相反,他擅长的是造出动物等“动态”造冰魔法。 因为格雷任性前去找毁掉故乡和亲人的恶魔复仇,赶来救他的乌鲁和利昂被迫与恶魔戴利欧拉决斗,因为戴利欧拉的强大,就算是乌鲁也没办法消灭它,认为乌鲁是最强的利昂因无法相信乌鲁的失败而要使用“绝对冰结”封印戴利欧拉来证明自己超越师傅,但却被乌鲁阻止,最后是乌鲁牺牲自己用“绝对冰结”永久的封印戴利欧拉,事后,愤怒到极点的利昂认为这一切都是格雷的错,是格雷害死了乌鲁,是格雷破坏自己的梦想,而愤然离去。 在迦尔纳岛上,利昂试图解冻被冻结10年的戴利欧拉,然后再将他击败,就是要证明自己已经超越乌鲁,但是遭到格雷的阻止并展开激烈交战,最后因为不听师傅乌鲁的教诲再加上自己过分的自信而败给格雷的“冰雪炮”,事后,他听格雷的劝告而加入“蛇姬之鳞”。 VS“六魔将军”时,他因为受到公会派遣加入联合军,和格雷一起与六魔将军之一的利萨展开激烈交战,因为雷射的惊人速度二人合力还是陷入苦战,这时的利昂完全改邪归正,不但把自己单手发动造型魔法的毛病改正而且用自己的智慧分析出敌人的弱点而赢得战斗胜利。最后为了阻止雷射使用炸弹魔水晶而与其一同跌落山崖,原以为已经牺牲的利昂,之后却又奇迹似的出现在格雷众人面前(其实利昂在落下山崖时就打落了雷射身上的炸弹魔水晶,并且在落地后以“Ice Make”做冰墙千钧一发的挡住了爆炸。跟格雷一样也是个暴露狂,衣服也经常会莫名其妙的不见。 七年后变得更帅气了,与鸠拉拉等人来探望七年后归来的格雷等人,并告知格雷关于乌鲁蒂亚和梅尔蒂的事情。 喜欢的是师傅乌鲁,讨厌的则是格雷(迦尔纳岛事件后已和好)。对七年后回归妖精尾巴的茱比亚一见钟情,并马上对其表示爱意。(被露西吐槽好直接,格雷则吐槽麻烦的事情来了!)。

  其他成员

  雪莉·布兰蒂 “蛇姬之鳞”成员之一,小时候父母被戴利欧拉杀害,为了讨伐戴利欧拉而试图脱离“蛇姬之鳞”,加入利昂的行列,口头禅是“这就是爱”,擅长“人偶击”魔法。养了一只名叫安洁莉娜的大老鼠。 VS“六魔将军”时,因为是行会派遣所以加入联合军,此时形象整个焕然一新,据本人的说法是为了纪念17岁,与六魔将军旗下的黑暗公会展开激烈交战,在利昂和格雷对抗雷射时,以为利昂为了救她和格雷而牺牲自己,被涅槃影响心智,堕入黑暗,得知利昂没事心智才又恢复光明,后来负责用“人偶击”操纵青色天马的公会战舰克里斯汀娜,阻止涅槃攻击妖猫之宿,六魔将军事件过后似乎和莲·阿加兹基有交往。 很讨厌露西但其实很在意露西,在露西被首脑重伤倒地后警告露西不能死,不然我就无法继续讨厌你了的话语。 喜欢的东西是爱,讨厌的东西是水。七年后造型变成熟了许多,但个性依旧没变,与鸠拉等人来探望7年后归来的露西等人,并向露西炫耀“蛇姬之鳞”已经是这七年来在菲奥雷王国里是处于NO2的有名公会。 “波动”悠卡 “蛇姬之鳞”成员之一,同样是为了讨伐戴利欧拉而加入利昂的行列,被“妖精尾巴”的纳兹用“火龙的炎肘”击败。七年与鸠拉等人来探望七年后归来的纳兹等人。 托比 “蛇姬之鳞”成员之一,同样为了讨伐戴利欧拉而加入利昂的行列。自以为很强,但是被纳兹欺骗而被击败。被纳兹称为笨蛋。七年与鸠拉等人来探望七年后归来的纳兹等人。

  青色天马

  会长

  波布 是个肥胖的人妖大叔(年轻时是个超级型男),与马卡洛夫、高德曼、波琉西卡、罗布、亚吉马年轻时就已经是好朋友。平时人相当的随和,但是一发起火来也非常地可怕。因为最近马卡欧·空波打着商讨的旗帜,频繁出入青色天马,所以被他给看上了。 波布会长

  Tri Men'

  一夜·汪德雷·寿 “青色天马”成员之一,是公会中顶尖小队“Tri Men's”的领头。在以大量俊男美女成员而闻名的青色天马中是个特异的存在,长相令人不敢恭维,但其实力在公会中是属于佼佼者。“Tri Men's”非常尊敬他,称他为“老师”、“师父”、“大哥”等等(敬语很多变)。过去在出席会长之间的聚会时,对陪同马卡洛夫一同参加的艾露莎·舒卡勒特一见钟情。之后就一直半纠缠着艾露莎,是连艾露莎都承认拿他没辙的狠角色“VS六魔将军篇”中与六魔将军旗下的黑暗公会展开激烈交战,后不幸成为俘虏,但之后帮助打碎“涅盘”六颗魔水晶之一,总算不辱自己的英名。口禅是“Men!”,常常在被攻击等情况时脱口而出。七年后外表没什么变,但头发变得很长,与其他Tri Men's 成员乘坐“克里斯汀娜”来到妖精尾巴告知七年后剩余的成员天狼岛还存在的事,但豋场时本来想帅气的从克里斯汀娜上跳下来却跌了个狗啃屎(似乎没有受伤)。喜欢的是世上所有女性和芳香,讨厌的是臭味。 “百夜”响·雷提斯 “青色天马”成员之一,魔法周刊上“想让他当男友的魔导士排行榜”前几名的常客,很多女性魔导士被他甜美的外貌吸引而加入青色天马,虽然还没有心上人,但与女人的绯闻从未断绝过,有着“少女”杀手的传说(真伪不明) 。“VS六魔将军篇”中与六魔将军旗下的黑暗公会展开激烈交战,原来过去和卡莲·莉莉卡是恋人,差点因知晓卡莲死于六魔将军的“天使”安杰儿之手而堕入黑暗,所幸因露西·哈特菲利亚和星灵的羁绊而清醒将“古文书”注入露西体内而使露西使出“全天星辰”击败了天使。七年后外表没什么变,与其他Tri Men's成员乘坐“克里斯汀娜”来到妖精尾巴告知七年后剩余的成员天狼岛还存在的事,但一登场即开始与妖精尾巴的乐琪·奥利埃塔调情(还因此被吐槽)。喜欢的是全体女性,讨厌的是虫子。 “圣夜”伊凡·绨鲁姆 “青色天马”成员之一,最近才加入到公会中,曾经是魔法评议会旗下的强制管束部队·卢恩骑士团的见习生,评议会解体后加入青色天马,在必须选择自己前途之时决定了加入公会。“VS六魔将军篇”中与六魔将军旗下的黑暗公会展开激烈交战,与六魔将军午夜交手时因魔法完全被弹开而被秒杀,后来在魔导爆击艇“克里斯汀娜”上用“雪”的魔法炮弹攻击“涅槃”。七年后外表没什么变,与其他Tri Men's成员乘坐“克里斯提娜”来到妖精尾巴告知7年后剩余的成员天狼岛还存在的事,但一登场即开始与妖精尾巴的乐琪·奥力埃塔调情。喜欢的是御姐,讨厌的是青椒。 “空夜”莲·赤月 “青色天马”成员之一,是个“傲娇型”的男生,在行会 青色天马里有健身房和桑拿房,甚至还有晒黑魔水晶,他的肤色是用公会里配备的晒黑魔水晶晒出来的,顺便一提,晒黑魔水晶是为晒黑而设的魔法道具,配合使用水晶中存储的数据大约5分钟,就能够获得自己想要的肤色,那个存储数据里排列着616365几个迷一样的数字,莲是61~~615。“VS六魔将军篇”中与六魔将军旗下的黑暗公会展开激烈交战,与六魔将军深夜交手时因魔法完全被弹开而被秒杀,后来负责用“空气”让受到重创的魔导爆击艇“克里斯汀娜”得以升空作战,事件过后似乎与雪莉·布兰蒂有交往,在大魔斗演武证实与雪莉订婚。七年后外表没什么变,与其他Tri Men's成员乘坐“克里斯提娜”来到妖精尾巴告知7年后剩余的成员天狼岛还存在的事,但一登场即开始与妖精尾巴的乐琪·奥力埃塔调情。喜欢的是兔子,讨厌的是白皮肤。

  其他成员

  卡莲·莉莉卡 “青色天马”成员之一,白羊座星灵阿莉耶丝和狮子座星灵雷欧(洛基)的原契约主,外表漂亮,可是内心丑陋,视星灵为工具,与星灵订立契约只是为了得到好处。有一次因她虐待阿莉耶丝而令雷欧大为不满,并为阿莉耶丝出头,擅自到达人界,威胁卡莲取消她们之间的契约,卡莲不从,雷欧继续逗留于人间,最后于三年前一件工作中因未能成功“双重开门”召唤星灵而发生事故死去,实际上是被六魔将军之一的“天使”安杰儿杀死并夺走白羊座星灵,令雷欧深感后悔。喜欢的是奢侈品,讨厌的是不识抬举。 珍妮·莉亚莱特 “青色天马”成员之一,7年前魔法周刊理想魔法师女友排名第一,使用换装魔法,行会标志在左肩上,在大魔导演武会上担任嘉宾,并在第二天的决斗部分对上妖精的尾巴B队的米拉杰,在决斗中和米拉打赌谁输了,谁就要在魔导士周刊上刊登自己的裸照,后被米拉接受最强的撒旦击败

对自然数的迷恋

数论是最古老的数学分支之一,主要研究自然数的性质和相互关系。从毕达哥拉斯时代人们就沉湎于发现数的神秘关系之中,优美、简洁、智慧是这门科学的特点。就像其他数学神童一样,高斯首先迷恋上的也是自然数。高斯在1808年谈到:“任何一个花过一点功夫研习数论的人,必然会感受到一种特别的激情与狂热。”现代数学后一个“百事通”--大卫·希尔伯特的传记作者在谈到大师放下代数不变量理论转向数论研究时指出:“数学没有一个领域能够象数论那样,以它的美--一种不可抗拒的力量,吸引着数学家中的精华。”画家瓦西里·康定斯基也认为:“数是各类艺术最终的抽象表现。”我注意到一些不曾研究过数论的伟大数学家,如帕斯卡尔、笛卡尔、牛顿和莱布尼兹,他们都把后半生的精力奉献给了哲学或宗教,唯独费尔马、欧拉和高斯这三位对数论有着杰出贡献的数学家,却终其一生都不需要任何哲学和宗教,因为他们心中已经有了最纯粹、最本质的艺术--数论。

  这里我想引用印度数学天才拉曼纽扬的故事来说明数论学者与自然数的“情谊”,这位泰戈尔的同胞来自印度最南端的泰米尔纳德邦,是个贫穷的办事员,从没有受过高等教育,但他具有快速并且深刻地看出复杂的数的关系的惊人才华。著名的英国数学家G·H·哈代在1913年“发现”了他,并于次年把他邀请到英国,入剑桥大学。哈代有一次去探望病中的拉曼纽扬时对他讲,自己刚才乘坐的出租汽车车号1729似乎没有什么意义,但愿它不是一个不祥的预兆。拉曼纽扬却回答:“不,这是一个很有意思的数,1729是可以用两种方式表示成两个自然数立方和的最小的数(既等于1的三次方加上12的三次方,又等于9的三次方加上10的三次方)。哈代又问,那么对于四次方来说,这个最小数是多少呢?拉曼纽扬想了想,回答说:“这个数很大,答案是635318657。”(既等于59的四次方加上158的四次方,又等于133的四次方加上134的四次方)。

多才多艺  

高斯不仅是数学家,还是那个时代最伟大的物理学家和天文学家之一。在《算术研究》问世的同一年,即1801年的元旦,一位意大利天文学家在西西里岛观察到在白羊座(Aries)附近有光度八等的星移动,这颗现在被称作谷神星(Ceres)的小行星在天空出现了41天,扫过八度角之后,就在太阳的光芒下没了踪影。当时天文学家无法确定这颗新星是彗星还是行星,这个问题很快成了学术界关注的焦点,甚至成了哲学问题。黑格尔就曾写文章嘲讽天文学家说,不必那么热衷去找寻第八颗行星,他认为用他的逻辑方法可以证明太阳系的行星,不多不少正好是七颗。高斯也对这颗星着了迷,他利用天文学家提供的观测资料,不慌不忙地算出了它的轨迹。不管黑格尔有多么不高兴,几个月以后,这颗最早发现迄今仍是最大的小行星准时出现在高斯指定的位置上。自那以后,行星、大行星(海王星)接二连三地被发现了。

  在物理学方面高斯最引人注目的成就是在1833年和物理学家韦伯发明了有线电报,这使高斯的声望超出了学术圈而进入公众社会。除此以外,高斯在力学、测地学、水工学、电动学、磁学和光学等方面均有杰出的贡献。即使是数学方面,我们谈到的也只是他年轻时候在数论领域里所做的一小部分工作,在他漫长的一生中,他几乎在数学的每个领域都有开创性的工作。例如,在他发表了《曲面论上的一般研究》之后大约一个世纪,爱因斯坦评论说:“高斯对于近代物理学的发展,尤其是对于相对论的数学基础所作的贡献(指曲面论),其重要性是超越一切,无与伦比的。”

高斯是一对普通夫妇的儿子。他的母亲是一个贫穷石匠的女儿,虽然十分聪明,但却没有接受过教育,近似于文盲。在她成为高斯父亲的第二个妻子之前,她从事女佣工作。他的父亲曾做过园丁,工头,商人的助手和一个小保险公司的评估师。当高斯三岁时便能够纠正他父亲的借债账目的事情,已经成为一个轶事流传至今。他曾说,他在麦仙翁堆上学会计算。能够在头脑中进行复杂的计算,是上帝赐予他一生的天赋。

  高斯用很短的时间计算出了小学老师布置的任务:对自然数从1到100的求和。他所使用的方法是:对50对构造成和101的数列求和(1+100,2+99,3+98……),同时得到结果:5050。这一年,高斯9岁。父亲格尔恰尔德·迪德里赫对高斯要求极为严厉,甚至有些过份,常常喜欢凭自己的经验为年幼的高斯规划人生。高斯尊重他的父亲,并且秉承了其父诚实、谨慎的性格。

  在成长过程中,幼年的高斯主要得力于母亲和舅舅:高斯的母亲罗捷雅、舅舅弗利德里希(Friederich)。弗利德里希富有智慧,为人热情而又聪明能干投身于纺织贸易颇有成就。他发现姐姐的儿子聪明伶利,因此他就把一部分精力花在这位小天才身上,用生动活泼的方式开发高斯的智力。若干年后,已成年并成就显赫的高斯回想起舅舅为他所做的一切,深感对他成才之重要,他想到舅舅多产的思想,不无伤感地说,舅舅去世使"我们失去了一位天才"。正是由于弗利德里希慧眼识英才,经常劝导姐夫让孩子向学者方面发展,才使得高斯没有成为园丁或者泥瓦匠。

  在数学史上,很少有人象高斯一样很幸运地有一位鼎力支持他成才的母亲。罗捷雅直到34岁才出嫁,生下高斯时已有35岁了。她性格坚强、聪明贤慧、富有幽默感。高斯一生下来,就对一切现象和事物十分好奇,而且决心弄个水落石出,这已经超出了一个孩子能被许可的范围。当丈夫为此训斥孩子时,她总是支持高斯,坚决反对顽固的丈夫想把儿子变得跟他一样无知。

  罗捷雅真地希望儿子能干出一番伟大的事业,对高斯的才华极为珍视。然而,她也不敢轻易地让儿子投入当时尚不能养家糊口的数学研究中。在高斯19岁那年,尽管他已做出了许多伟大的数学成就,但她仍向数学界的朋友W波尔约(WBolyai,非欧几何创立者之一J波尔约之父)问道:高斯将来会有出息吗?W波尔约说她的儿子将是"欧洲最伟大的数学家",为此她激动得热泪盈眶。

  7岁那年,高斯第一次上学了。头两年没有什么特殊的事情。1787年高斯10岁,他进入了学习数学的班次,这是一个首次创办的班,孩子们在这之前都没有听说过算术这么一门课程。数学教师是布特纳,他对高斯的成长也起了一定作用。

  当然,这也是一个等差数列的求和问题。当布特纳刚一写完时,高斯也算完并把写有答案的小石板交了上去。E.T.贝尔写道,高斯晚年经常喜欢向人们谈论这件事,说当时只有他写的答案是正确的,而其他的孩子们都错了。高斯没有明确地讲过,他是用什么方法那么快就解决了这个问题。数学史家们倾向于认为,高斯当时已掌握了等差数列求和的方法。一位年仅10岁的孩子,能独立发现这一数学方法实属很不平常。贝尔根据高斯本人晚年的说法而叙述的史实,应该是比较可信的。而且,这更能反映高斯从小就注意把握更本质的数学方法这一特点。

  高斯的计算能力,更主要地是高斯独到的数学方法、非同一般的创造力,使布特纳对他刮目相看。他特意从汉堡买了最好的算术书送给高斯,说:“你已经超过了我,我没有什么东西可以教你了。”接着,高斯与布特纳的助手巴特尔斯建立了真诚的友谊,直到巴特尔斯逝世。他们一起学习,互相帮助,高斯由此开始了真正的数学研究。

  1788年,11岁的高斯进入了文科学校,他在新的学校里,所有的功课都极好,特别是古典文学、数学尤为突出。经过巴特尔斯等人的引荐,布伦兹维克公爵召见了14岁的高斯。这位朴实、聪明但家境贫寒的孩子赢得了公爵的同情,公爵慷慨地提出愿意作高斯的资助人,让他继续学习。布伦兹维克公爵在高斯的成才过程中起了举足轻重的作用。不仅如此,这种作用实际上反映了欧洲近代科学发展的一种模式,表明在科学研究社会化以前,私人的资助是科学发展的重要推动因素之一。高斯正处于私人资助科学研究与科学研究社会化的转变时期。

  1792年高斯进入布伦兹维克的卡罗琳学院继续学习。1795年,公爵又为他支付各种费用,送他入德国著名的哥丁根大学,这样就使得高斯得以按照自己的理想,勤奋地学习和开始进行创造性的研究。1799年,高斯完成了博士论文,回到家乡布伦兹维克,正当他为自己的前途、生计担忧而病倒时─虽然他的博士论文顺利通过了,已被授予博士学位,同时获得了讲师职位,但他没有能成功地吸引学生,因此只能回老家-又是公爵伸手救援他。公爵为高斯付诸了长篇博士论文的印刷费用,送给他一幢公寓,又为他印刷了《算术研究》,使该书得以在1801年问世;还负担了高斯的所有生活费用。所有这一切,令高斯十分感动。他在博士论文和《算术研究》中,写下了情真意切的献词:"献给大公","你的仁慈,将我从所有烦恼中解放出来,使我能从事这种独特的研究"。

  1806年,公爵在抵抗拿破仑统帅的法军时不幸阵亡,这给高斯以沉重打击。他悲痛欲绝,长时间对法国人有一种深深的敌意。大公的去世给高斯带来了经济上的拮据,德国处于法军奴役下的不幸,以及第一个妻子的逝世,这一切使得高斯有些心灰意冷,但他是位刚强的汉子,从不向他人透露自己的窘况,也不让朋友安慰自己的不幸。人们只是在19世纪整理他的未公布于众的数学手稿时才得知他那时的心态。在一篇讨论椭圆函数的手搞中,突然插入了一段细微的铅笔字:"对我来说,死去也比这样的生活更好受些。"

  为了不使德国失去最伟大的天才,德国著名学者洪堡(BAVon Humboldt)联合其他学者和政界人物,为高斯争取到了享有特权的哥丁根大学数学和天文学教授,以及哥丁根天文台台长的职位。1807年,高斯赴哥丁根就职,全家迁居于此。从这时起,除了一次到柏林去参加科学会议以外,他一直住在哥丁根。洪堡等人的努力,不仅使得高斯一家人有了舒适的生活环境,高斯本人可以充分发挥其天才,而且为哥丁根数学学派的创立、德国成为世界科学中心和数学中心创造了条件。同时,这也标志着科学研究社会化的一个良好开端。

  高斯有"数学王子"、"数学家之王"的美称、被认为是人类有史以来"最伟大的四位数学家之一"(阿基米德、牛顿、高斯、欧拉)。人们还称赞高斯是"人类的骄傲"。天才、早熟、高产、创造力不衰、……,人类智力领域的几乎所有褒奖之词,对于高斯都不过份。

  高斯的数学研究几乎遍及所有领域,在数论、代数学、非欧几何、复变函数和微分几何等方面都做出了开创性的贡献。他还把数学应用于天文学、大地测量学和磁学的研究,发明了最小二乘法原理。十分注重数学的应用,并且在对天文学、大地测量学和磁学的研究中也偏重于用数学方法进行研究。

  高斯开辟了许多新的数学领域,从最抽象的代数数论到内蕴几何学,都留下了他的足迹。从研究风格、方法乃至所取得的具体成就方面,他都是18─19世纪之交的中坚人物。如果我们把18世纪的数学家想象为一系列的高山峻岭,那么最后一个令人肃然起敬的巅峰就是高斯;如果把19世纪的数学家想象为一条条江河,那么其源头就是高斯。

  卡尔·弗里德里希·高斯他幼年时就表现出超人的数学天才。11岁时发现了二项式定理,17岁时发明了二次互反律,18岁时发明了正十七边形的尺规作图法,解决了两千多年来悬而未决的难题,他也视此为生平得意之作,还交待要把正十七边形刻在他的墓碑上,但后来他的墓碑上并没有刻上十七边形,而是十七角星,因为负责刻碑的雕刻家认为,正十七边形和圆太像了,大家一定分辨不出来。他发现了质数分布定理、算术平均、几何平均。21岁大学毕业,22岁时获博士学位。1804年被选为英国皇家学会会员。从1807年到1855年逝世,一直担任格丁根大学教授兼格丁根天文台长。在成长过程中。幼年的高斯主要是力于母亲和舅舅。高斯的外祖父是一位石匠,30岁那年死于肺结核,留下了两个孩子:高斯的母亲罗捷雅、舅舅弗利德里希。

慷慨、仁慈的资助人去世了,因此高斯必须找一份合适的工作,以维持一家人的生计。由于高斯在天文学、数学方面的杰出工作,他的名声从1802年起就已开始传遍欧洲。彼得堡科学院不断暗示他,自从1783年欧拉去世后,欧拉在彼得堡科学院的位置一直在等待着像高斯这样的天才。公爵在世时坚决劝阻高斯去俄国,他甚至愿意给高斯增加薪金,为他建立天文台。现在,高斯又在他的生活中面临着新的选择。

  高斯的研究领域,遍及纯粹数学和应用数学的各个领域,并且开辟了许多新的数学领域,从最抽象的代数数论到内蕴几何学,都留下了他的足迹。从研究风格、方法乃至所取得的具体成就方面。

  虽然数学研究、科学工作在18世纪末仍然没有成为令人羡慕的职业,但高斯依然生逢其时,因为在他快步入而立之年之际,欧洲资本主义的发展,使各国政府都开始重视科学研究。随着拿破仑对法国科学家、科学研究的重视,俄国的沙皇以及欧洲的许多君主也开始对科学家、科学研究刮目相看,科学研究的社会化进程不断加快,科学的地位不断提高。作为当时最伟大的科学家,高斯获得了不少的荣誉,许多世界著名的科学泰斗都把高斯当作自己的老师。卡尔·弗里德里希·高斯1802年,高斯被俄国彼得堡科学院选为通讯院士、喀山大学教授;1877年,丹麦政府任命他为科学顾问,这一年,德国汉诺威政府也聘请他担任政府科学顾问。

  高斯的一生,是典型的学者的一生。他始终保持着农家的俭朴,使人难以想象他是一位大教授,世界上最伟大的数学家。他先后结过两次婚,几个孩子曾使他颇为恼火。不过,这些对他的科学创造影响不太大。在获得崇高声誉、德国数学开始主宰世界之时,一代天骄走完了生命旅程。

  高斯生于Brunswick,位于现在德国中北部。他的祖父是农民,父亲是泥水匠,母亲是一个石匠的女儿,有一个很聪明的弟弟,高斯这位舅舅,对小高斯很照顾,偶尔会给他一些指导,而父亲可以说是一名大老粗,认为只有力气能挣钱,学问这种劳什子对穷人是没有用的。

  高斯很早就展现过人才华,三岁时就能指出父亲帐册上的错误。七岁时进了小学,在破旧的教室里上课,老师对学生并不好,常认为自己在穷乡僻壤教书是怀才不遇。高斯十岁时,老师考了那道著名的“从一加到一百”,终于发现了高斯的才华,他知道自己的能力不足以教高斯,就从汉堡买了一本较深的数学书给高斯读。同时,高斯和大他差不多十岁的助教Bartels变得很熟,而Bartels的能力也比老师高得多,后来成为大学教授,他教了高斯更多更深的数学。

  老师和助教去拜访高斯的父亲,要他让高斯接受更高的教育,但高斯的父亲认为儿子应该像他一样,作个泥水,而且也没有钱让高斯继续读书,最后的结论是--去找有钱有势的人当高斯的赞助人,虽然他们不知道要到哪里找。经过这次的访问,高斯免除了每天晚上织布的工作,每天和Bartels讨论数学,但不久之后,Bartels也没有什么东西可以教高斯了。1788年高斯不顾父亲的反对进了高等学校。数学老师看了高斯的作业后就要他不必再上数学课,而他的拉丁文不久也凌驾全班之上。

  事实上在高斯之前有许多数学家认为已给出了这个结果的证明,可是没有一个证明是严密的。高斯把前人证明的缺失一一指出来,然后提出自己的见解,他一生中一共给出了四个不同的证明。

  在1801年,高斯二十四岁时出版了《算学研究》(Disquesitiones Arithmeticae),这本书以拉丁文写成,原来有八章,由于钱不够,只好印七章。这本书除了第七章介绍代数基本定理外,其余都是数论,可以说是数论第一本有系统的著作,高斯第一次介绍“同余”(Congruent)的概念。“二次互逆定理”也在其中。二十四岁开始,高斯放弃在纯数学的研究,作了几年天文学的研究。

  当时的天文界正在为火星和木星间庞大的间隙烦恼不已,认为火星和木星间应该还有行星未被发现。在1801年,意大利的天文学家Piazzi,发现在火星和木星间有一颗新星。它被命名为“谷神星”。现在我们知道它是火星和木星的小行星带中的一个,但当时天文学界争论不休,有人说这是行星,有人说这是彗星。必须继续观察才能判决,但是Piazzi只能观察到它9度的轨道,再来,它便隐身到太阳后面去了。因此无法知道它的轨道,也无法判定它是行星或彗星。

卡尔·弗里德里希·高斯

高斯这时对这个问是产生兴趣,他决定解决这个捉摸不到的星体轨迹的问题。高斯自己独创了只要三次观察,就可以来计算星球轨道的方法。他可以极准确地预测行星的位置。果然,谷神星准确无误的在高斯预测的地方出现。这个方法--虽然他当时没有公布--就是“最小平方法”(Method of Least Square)。

  1802年,他又准确预测了小行星二号--智神星的位置,这时他的声名远播,荣誉滚滚而来,俄国圣彼得堡科学院选他为会员,发现Pallas的天文学家Olbers请他当哥廷根天文台主任,他没有立刻答应,到了1807年才前往哥廷根就任。

  卡尔·弗里德里希·高斯1809年他写了《天体运动理论》二册,第一册包含了微分方程、圆椎截痕和椭圆轨道,第二册他展示了如何估计行星的轨道。高斯在天文学上的贡献大多在1817年以前,但他仍一直做着观察的工作到他七十岁为止。虽然做着天文台的工作,他仍抽空做其他研究。为了用积分解天体运动的微分力程,他考虑无穷级数,并研究级数的收敛问题,在1812年,他研究了超几何级数,并且把研究结果写成专题论文,呈给哥廷根皇家科学院。

  1820到1830年间,高斯为了测绘汗诺华公国的地图,开始做测地的工作,他写了关于测地学的书,由于测地上的需要,他发明了日观测仪。为了要对地球表面作研究,他开始对一些曲面的几何性质作研究。

  1827年他发表了《曲面的一般研究》,涵盖一部分现在大学念的“微分几何”

  在1830到1840年间,高斯和一个比他小廿七岁的年轻物理学家-韦伯(Withelm Weber) 一起从事磁的研究,他们的合作是很理想的:韦伯作实验,高斯研究理论,韦伯引起高斯对物理问题的兴趣,而高斯用数学工具处理物理问题,影响韦伯的思考工作方法。

  1833年高斯从他的天文台拉了一条长八千尺的电线,跨过许多人家的屋顶,一直到韦伯的实验室,以伏特电池为电源,构造了世界第一个电报机。高斯对自己的工作态度是精益求精,非常严格地要求自己的研究成果。他自己曾说:宁可发表少,但发表的东西是成熟的成果。许多当代的数学家要求他,不要太认真,把结果写出来发表,这对数学的发展是很有帮助的。其中一个有名的例子是关于非欧几何的发展。非欧几何的的开山祖师有三人,高斯、 罗巴切乌斯基,波埃伊。其中Bolyai的父亲是高斯大学的同学,他曾想试着证明平行公理,虽然父亲反对他继续从事这种看起来毫无希望的研究,小Bolyai还是沉溺于平行公理。最后发展出了非欧几何,并且在1832~1833年发表了研究结果,老Bolyai把儿子的成果寄给老同学高斯,想不到高斯却回信道:

  to preise it would mean to praise myself 我无法夸赞他,因为夸赞他就等于夸奖我自己。早在几十年前,高斯就已经得到了相同的结果,只是怕不能为世人所接受而没有公布而已。美国的著名数学家贝尔,在他着的《数学工作者》一书里曾经这样批评高斯:在高斯死后,人们才知道他早就预见一些十九世的数学,而且在1800年之前已经期待它们的出现。如果他能把他所知道的一些东西泄漏,很可能现在数学早比目前还要先进半个世纪或更多的时间。阿贝尔和雅可比可以从高斯所停留的地方开始工作,而不是把他们最好的努力花在发现高斯早在他们出生时就知道的东西。而那些非欧几何学的创造者,可以把他们的天才用到其他方面去。

  哥廷根大学当高斯12岁时,已经开始怀疑元素几何学中的基础证明。当他16岁时,预测在欧氏几何之外必然会产生一门完全不同的几何学。他导出了二项式定理的一般形式,将其成功的运用在无穷级数,并发展了数学分析的理论。

  高斯的老师Bruettner与他助手 Martin Bartels 很早就认识到了高斯在数学上异乎寻常的天赋,同时Herzog Carl Wilhelm Ferdinand von Braunschweig也对这个天才儿童留下了深刻印象。于是他们从高斯14岁其便资助其学习与生活。这也使高斯能够在公元1792-1795年在Carolinum学院(今天Braunschweig学院的前身)学习。18岁时,高斯转入哥廷根大学学习。在他19岁时,第一个成功的用尺规构造出了规则的17角形。

  高斯于公元1805年10月5日与来自Braunschweig的Johanna Elisabeth Rosina Osthoff**(1780-1809)结婚。在公元1806年8月21日迎来了他生命中的第一个孩子约瑟。此后,他又有两个孩子。Wilhelmine(1809-1840)和Louis(1809-1810)。1807年高斯成为哥廷根大学的教授和当地天文台的台长。

  虽然高斯作为一个数学家而闻名于世,但这并不意味着他热爱教书。尽管如此,他越来越多的学生成为有影响的数学家,如后来闻名于世的Richard Dedekind和黎曼。

  高斯非常信教且保守。他的父亲死于1808年4月14日,晚些时候的1809年10月11日,他的第一位妻子也离开人世。次年8月4日高斯迎娶第二位妻子Friederica Wilhelmine (1788-1831)。他们又有三个孩子:Eugen (1811-1896),Wilhelm (1813-1883) 和 Therese (1816-1864)。1831年9月12日她的第二位妻子也死去,1837年高斯开始学习俄语。1839年4月18日,他的母亲在哥廷根逝世,享年95岁。高斯于1855年2月23日凌晨1点在哥廷根去世。他的很多散布在给朋友的书信或笔记发现于1898年。

编辑本段研究领域  高斯的数学研究几乎遍及所有领域,在数论、代数学、非欧几何、复变函数和微分几何等方面都做出了开创性的贡献。他还把数学应用于天文学、大地测量学和磁学的研究,发明了最小二乘法原理。高理的数论研究 总结 在《算术研究》(1801)中,这本书奠定了近代数论的基础,它不仅是数论方面的划时代之作,也是数学史上不可多得的经典著作之一。高斯对代数学的重要贡献是证明了代数基本定理,他的存在性证明开创了数学研究的新途径。高斯在1816年左右就得到非欧几何的原理。他还深入研究复变函数,建立了一些基本概念发现了著名的柯西积分定理。他还发现椭圆函数的双周期性,但这些工作在他生前都没发表出来。1828年高斯出版了《关于曲面的一般研究》,全面系统地阐述了空间曲面的微分几何学,并提出内蕴曲面理论。高斯的曲面理论后来由黎曼发展。高斯一生共发表155篇论文,他对待学问十分严谨,只是把他自己认为是十分成熟的作品发表出来。其著作还有《地磁概念》和《论与距离平方成反比的引力和斥力的普遍定律》等。

卡尔·弗里德里希·高斯1801年高斯有机会戏剧性地施展他的优势的计算技巧。那年的元旦,有一个后来被证认为小行星并被命名为谷神星的天体被发现当时它好像在向太阳靠近,天文学家虽然有40天的时间可以观察它,但还不能计算出它的轨道。高斯只作了3次观测就提出了一种计算轨道参数的方法,而且达到的精确度使得天文学家在1801年末和1802年初能够毫无困难地再确定谷神星的位置。高斯在这一计算方法中用到了他大约在1794年创造的最小二乘法(一种可从特定计算得到最小的方差和中求出最佳估值的方法在天文学中这一成就立即得到公认。他在《天体运动理论》中叙述的方法今天仍在使用,只要稍作修改就能适应现代计算机的要求。高斯在小行星”智神星”方面也获得类似的成功。他的方法今天仍在使用,只要稍作修改就能适应现代计算机的要求。

  高理的数论研究 总结 在《算术研究》(1801)中,这本书奠定了近代数论的基础,它不仅是数论方面的划时代之作,也是数学史上不可多得的经典著作之一。这本书除了第七章介绍代数基本定理外,其余都是数论,可以说是数论第一本有系统的著作,高斯第一次介绍“同余”(Congruent)的概念。“二次互逆定理”也在其中。

  高斯对代数学的重要贡献是证明了代数基本定理,他的存在性证明开创了数学研究的新途径。事实上在高斯之前有许多数学家认为已给出了这个结果的证明,可是没有一个证明是严密的。高斯把前人证明的缺失一一指出来,然后提出自己的见解,他一生中一共给出了四个不同的证明。高斯在1816年左右就得到非欧几何的原理。他还深入研究复变函数,建立了一些基本概念发现了著名的柯西积分定理。他还发现椭圆函数的双周期性,但这些工作在他生前都没发表出来。

  1828年高斯出版了《关于曲面的一般研究》,全面系统地阐述了空间曲面的微分几何学,并提出内蕴曲面理论。高斯的曲面理论后来由黎曼发展。

  他的《天体运动理论》二册,第一册包含了微分方程、圆椎截痕和椭圆轨道,第二册他展示了如何估计行星的轨道。为了用积分解天体运动的微分力程,他考虑无穷级数,并研究级数的收敛问题,在1812年,他研究了超几何级数,并且把研究结果写成专题论文,呈给哥廷根皇家科学院。

  

 

第1话 (宝瓶座)

剧情简介:在一个名为菲欧烈的魔法王国里,存在着以魔法帮人们处理事件的魔导士公会,而其中最有名的公会就是聚集了顶尖魔导士的公会-妖精的尾巴。而故事就在一个以成为独当一面的星灵魔导士为目标的少女露西,她与纳兹相遇的这一刻揭开了序幕…

第2话 (时钟座、金牛座)

剧情简介:露西怀抱著希望跟著纳兹与哈比,三人一同前往她一直以来梦寐以求想要加入的公会.妖精尾巴。就在她踏入公会的那一瞬间,感动的情绪让她对未来充满了希望。随後,就算百般不愿意,但是她还是见识到了公会成员他们那些不是很正常的一面,突然间她似乎又对未来产生了疑问…

第3话(小犬座、处女座)

剧情简介:露西在和纳兹与哈比组成团队後,终於要接下第一个工作了,委托内容就是潜入某个宅邸然後毁掉一本书,他们就可以得到丰厚的报酬。但是工作内容看起来真的是很简单,也因此与高报酬形成强烈的对比。究竟这本书有何特别之处?又为何委托人一定要毁了它呢?

第4话(处女座、巨蟹座)

剧情简介:纳兹等人接下了一份到艾巴尔宅邸,找寻并销毁一本书的工作。这本名为『日出』的书原来是著名魔导士作家凯姆.萨雷欧生前的遗作。但是奇怪的是,它居然是个以艾巴尔为主角的故事。露西因为不相信这位大作家会写出这样的故事,因此直觉它一定有秘密,於是…

第7话(处女座)

纳兹等人受困在车站里,但是幸好哈比有回想到,他有从芭露歌那委托来的钥匙。於是露西在和芭露歌订定契约後,一行人成左熔瘗k出车站。而後纳兹更在哈比的协助下,火速追赶艾利高尔而去,两个强大的魔导士,即将展开了一场火与风的较劲。

第14话 (宝瓶座)

剧情简介:洁莉所使用的魔法人偶击是专门在操控人类以外的东西,因为星灵并不是人类,所以她的魔法对星灵很有用,也因此露西在这场战斗里一直居於下风…。但是露西在危机之中灵机一动想到要召唤阿葵亚…究竟她要利用阿葵亚的什麼特点呢

第11话(时钟座)

剧情简介:"S级任务"是指如果瞬间判断错误就会让人丧命的危险任务。因此在妖精尾巴里,只有会长认可的魔导士,才有资格上到公会二楼取得S级任务的委托,但没想到纳兹竟然让哈比偷偷到二楼来偷取S级任务的委托单。这是个灾祸会降临在身上的迦尔纳岛…

第12话(天琴座)

剧情简介:在迦尔纳岛里的遗迹之中,纳兹一行人竟意外发现到,格雷的师父乌璐赌上自己的命封印的怪物"戴利欧拉"。甚至还发现有一群神秘人物聚集著月光,似乎在进行著什麼邪恶的企图。纳兹等人守株待兔之下,没想到等到的人竟然是格雷的师兄利昂! 

第13话(金牛座、处女座)

剧情简介:格雷小时候的师兄利昂,企图让当年被他们师父乌璐封印起来的戴利欧拉复活,甚至还将前来阻止的格雷打伤。而纳兹、露西等人则是为了拯救村民的性命,同时还要阻止这场恶行,决定挺身而出与利昂对抗,但是这次的状况似乎…

第27话(射手座)

剧情简介:约瑟亲自出马前来攻击艾尔莎等人,几人则因此而被打成重伤。纳兹则是为了营救被抓的露西前往敌阵,在遇到铁的灭龙魔导士戈吉尔之後,两名灭龙魔导士正式展开全面对决,只是没想到纳兹却因为无法吃到火而屈居下风,几乎是任凭戈吉尔宰割,而戈吉尔却能吃下铁增强力量,纳兹首度出现性命的危机了!?

第32话(白羊座)

剧情简介:原来洛基本是一个星灵,却因故害死自己的钥匙所有者,因此被星灵界永久放逐,但星灵在人界里无法永远存活,洛基知道自己来日不长,决定死在前所有者的墓前,但露西在得知洛基的秘密後,认为洛基不该为当时的意外自责,决定帮助洛基回到星灵界。 

第58话(宝瓶座、射手座、白羊座、双子座、天蝎座)

剧情简介:原来六魔将军之一的天使也是星灵魔导士,不但设计纳兹倒在木筏上不能动弹,还让露西召唤出来的星灵都因故无法作战,最後甚至要取露西的性命,但就在危急之际,希彼基将自己的魔法古文书,传给了露西,一个不曾见过的强大魔法,於焉诞生…

标准处女座,老爸,老公,老板都是白羊座,对白羊座的火爆脾气太有感触。白羊座的男生忽冷忽热,不是没感觉,是他们总喜欢追逐新鲜事物,当你纠结懊恼准备分手,他乖乖又来了,而且对你的质问一头雾水,对白羊男就要懂的顺势而为,不要刻意黏糊他,要懂得给自己和他很大尺度的空间,白羊男喜欢身边的女性夺人眼球,身材好,有气质,穿衣得体,落落大方,能歌善舞,反正就是带在身边超有面子的感觉,有一项技能超人也行,就是你在其他男人眼里都是花,但是只能被他折服就欧拉。白羊脾气火爆,思维是直线型的,虐心本领天生高人一筹,吵架跟处女不是同一轨迹,吵了半天发现其实两人不在同一争吵点上,或者说的不是同一件事,白羊虐你骂你越凶说明他在意你,一般关系的人白羊不屑理睬的,只有最亲近信任的人白羊经常暴露最坏的脾气和最吹毛求疵的本领,处女女那么要求完美,那么外貌协会,那么自律自虐,那么有洁癖尤其是精神洁癖,那么不拜金,一旦对身边哪个白羊入了眼,只要能放大自身格局,能受的了短暂委屈,懂的自我调适,对于那个白羊死心塌地的忠诚和崇拜,你的福气就来了,白羊大方,白羊重情义,白羊是勇士,你就安心坐公主椅5、别对白羊耍心机,处女座的思维缜密但是白羊及其注重信任度,如果你是套路满满,白羊厌倦了就不会回头,处女座跟白羊的精神沟通可以很深刻,而且可以很深远,多数白羊男都是闷骚界的极品,战场上的猛士,朋友圈里的大善人。

欢迎分享,转载请注明来源:表白网

原文地址:https://h5.hunlipic.com/xing/839628.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-08-21
下一篇2023-08-21

发表评论

登录后才能评论

评论列表(0条)

    保存