为什么飞船要在太空进行交会对接

为什么飞船要在太空进行交会对接,第1张

大家平时有观看过科技频道吗中国发射的“神舟八号”“神舟九号”“神舟十号”与“天宫一号”大家应该都知道吧,可是大家知道他们为什么要在太空进行交会对接吗其中的原因是什么呢相信许多朋友们都不太了解,下面就由我来给大家解答一下疑惑吧。

由于科学研究的需要,空间站的尺寸十分巨大。例如,“国际空间站”由航天员居住舱、实验舱、服务舱、对接过渡舱、桁架、太阳翼等部分组成,长109米,宽(含翼展)73米,总质量约420吨。无论是什么型号的运载火箭,都不可能一次把数百吨的空间站运送到轨道上,所以只能将各舱段分批发射,然后在太空利用交会对接技术搭建起来。所以交会对接技术是建设空间站的基础。

在其他太空活动中,比如为长期在轨道上运行的空间站运送航天员和提供物资补给,或在轨航天器之间的互访、物资转运或紧急救生等,也要用到交会对接技术。在未来的深空探测等航天活动中,交会对接技术同样是不可或缺的。

航天器的交会对接是指两个航天器在空间轨道上会合并在结构上连成一个整体的技术,是实现空间站、航天飞机、太空平台和空间运输系统等的空间装配、回收、补给、维修、航天员交换及营救等在轨服务的先决条件。

在空间交会与对接的两个航天器中,一个称目标飞行器,一般是空间站或其他大型航天器,是准备对接的目标;另一个称追踪飞行器,一般是地面发射的宇宙飞船、航天飞机等,是与目标飞行器对接的航天器。例如“天宫一号”就是目标飞行器,而“神舟十号”就是追踪飞行器。

交会对接时,最主要的困难在于两个航天器都在以7千米每秒以上的速度运行,它们的相对位置和速度都必须精确控制,否则可能会彼此错过甚至追尾碰撞。

航天器执行交会对接,可分成四个步骤:远程导引段、近程导引段、最终逼近段和对接停靠段。在开始的远程导引段,在地面测控的支持下,追踪飞行器经过若干次变轨机动,进入到追踪飞行器上的敏感器能捕获目标飞行器的范围(一般为15~100千米)。在近程导引段,追踪飞行器根据自身的微波和激光敏感器测得的与目标飞行器的相对运动参数,自动引导到目标飞行器附近的初始瞄准点(距目标飞行器05~1千米)。进入最终逼近段,追踪飞行器首先捕获目标飞行器的对接轴,对接轴线不沿轨道飞行方向,要求追踪飞行器在轨道平面外进行绕飞机动,以进入对接走廊。此时,两个飞行器之间的距离约100米,相对速度约1~3米/秒。最后的对接停靠段,追踪飞行器利用由摄像敏感器和接近敏感器组成的测量系统精确测量两个飞行器的距离、相对速度和姿态,同时启动小发动机进行机动,使之沿对接走廊向目标最后逼近。在对接前关闭发动机,以015~018米/秒的停靠速度与目标相撞,最后利用栓—锥式或异体同构周边式对接装置,使两个飞行器在结构上实现硬连接,完成信息传输总线、电源线和流体管线的连接。

自20世纪60年代以来,美国、俄罗斯(苏联)、中国、日本等国总共实施了300多次航天器交会对接,其中俄罗斯(苏联)进行的次数最多。目前,完全独立拥有空间交会对接技术的国家有美国、俄罗斯和中国。

1966年3月,美国航天员阿姆斯特朗和斯科特驾驶“双子星座8号”飞船,与经过改装的一个火箭第三级无人舱体,进行了人类历史上首次载人空间交会对接。从1964年到1966年,“双子星座号”系列飞船通过了2次无人和10次 载人飞行,验证了多种交会对接方式和技术,为阿波罗探月活动的顺利进行做好了充分准备。美国航天器的交会对接多采用手动方式,这主要全面考虑技术的把握性、安全可靠性和成本经济性等诸多因素。

俄罗斯(苏联)是进行航天器交会对接最多的国家,多采用自动对接技术。1967年,第一次无人航天器自动交会对接就是由苏联的两艘“联盟”飞船完成的。“联盟”飞船至今仍在服役,它和“进步号”货运飞船已经执行过200多次交会对接任务。

与其他任务一样,交会对接也不能保证每次都获得成功。美国交会对接发生过两次故障:一次是“双子星座9号”与“阿金纳”目标飞行器对接时发生故障;另一次是“阿波罗14号”飞往月球过程中,在指令舱与登月舱对接时,由于对接机构材料原因,出现多次对接失败,直到第六次试接才获得成功。俄罗斯交会对接的失败给人们留下深刻印象。1997年6月24日,“进步M-34号”货运飞船脱离“和平号”空间站对接口,飞离了空间站一段距离,次日该飞船飞回来再次逼近空间站时,由于制动控制部件失灵,飞船没有及时对航天员指令做出响应,直接撞到“和平号”的“晶体”舱上。2010年,俄罗斯两艘“进步M号”货运飞船与“国际空间站”进行自动对接时也先后失败,后来采取了改进措施才获得成功。

列昂诺夫首次进行了太空行走。

第一个在太空行走的宇航员是苏联的列昂诺夫。1965年3月18日,他进行了第一次太空行走,只在太空停留了12分钟就返回了驾驶舱。列昂诺夫是被装有气闸的“升天2号”飞船送上天空的,所以列昂诺夫是第一个走出气闸的人。

第一个在太空行走的美国宇航员是怀特,他于1965年6月3日完成了太空行走,并在太空停留了36分钟。怀特乘坐的是双子座4号飞船,没有配备气闸舱,直接打开舱门出舱。由于双子座飞船在同一个舱内搭载了两名宇航员,当怀特打开舱门时,另一名宇航员麦克迪韦尔也暴露在宇宙的真空环境中。

太空行走的方式

脐带式。早期研制的脐带式的生命保障系统与乘员舱连接,航天员身穿航天服,航天员所需要的氧气、压力、冷却工质、电源和通讯等都是通过脐带由“母”载人航天器提供的。

便携式。后期发明的装在航天服背后的便携式环控生保系统。航天员出舱后与“母”航天器分离,由于身穿舱外用的航天服,背着便携式环控生保装置,以及太空机动装置,航天员可到离“母”载人航天器100米远处活动。

机动式。有人称载人机动装置是太空“摩托艇”,因为它装有推进系统,并能“自由”机动飞行。

神舟十五号返航时间:6月4号。

6月4日早上6点33分,神舟十五号载人飞船返回舱在东风着陆场成功着陆。天宫空间站距离地面约390公里,绕地球飞行的速度为768公里/秒,这个速度几乎是高铁的80倍。在此之前,航天员搭乘载人飞船离开空间站返回至地面需要28个小时,而如今,自神舟十三号以后,缩短至83个小时。

390公里,28个小时,即便是如今的83个小时,很多人也会觉得为什么需要这么久。其实,载人飞船在脱离空间站返回到地面上需要很多步骤,并不是直线飞行。

返航过程

航天员进入返回舱,关闭舱门后2个小时以内,飞船与天宫空间站分离,然后开始轨道调整,此时,飞船需要绕地球飞行五圈,历时75个小时。绕地球飞行至最后一圈时,飞船需要经过两次调整姿态,在调整姿态完成以后,开始进行返回制动,进入半弹道式返回轨道。

在高度145公里时,推进舱与返回舱分离,推进舱进入大气层烧毁,返回舱则需要进行姿态调整,准备再入大气层。

返回舱在距离地面80公里处进入“黑障”状态,黑障状态是因为飞船在大气层内部高速飞行,其在与大气层冲击时产生高温,高温使得周围物质变成等离子体,等离子体影响信号传输,因此,返回舱与外界的联络会中断4至7分钟,在目前看来,这是一个无法避免的现象。

在距地面10公里时开降落伞,降落伞有引导伞、减速伞、主降落伞,需要依照次序进行释放,直至飞船速度降至5-6米每秒。在距地面6公里时,排出多余燃料,航天员座椅高度提升。最终在距离地面1米处,反推火箭点火,进一步降低速度,实现软着陆。

以上内容参考-神舟十五号

欢迎分享,转载请注明来源:表白网

原文地址:https://h5.hunlipic.com/xing/2347275.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-12-10
下一篇2023-12-10

发表评论

登录后才能评论

评论列表(0条)

    保存