狂风战斗机的衍生型号

狂风战斗机的衍生型号,第1张

对地攻击型 (IDS)基本型。装备英、德、意、沙特空军及德国海军。主要任务是对地攻击,同时兼顾侦察、空战和电子对抗等任务。1980 年交付英、德、意空军使用, 1986 年 3 月至 1987 年 10 月交付沙特空军的订货。共生产 736 架。

主要装备三国的空军及德国海军,生产了795架,为“狂风”的基本型,兼有空战能力。1973年12月原型机试飞,1979年7月生产型试飞。1980年陆续交付英国、德国、意大利空军使用,各国装备总数分别为199架、324架和84架;1986年3月开始交付沙特阿拉伯空军,直至1987年10月,共交付48架。对地攻击型共生产了736架,其中有一部分是为改成电子战及侦察型而生产的。英国空军使用的对地攻击型编号为“狂风”GR Mk1,但中期交付是经改进的飞机,其编号为GR Mk4,主要改装了更先进的电子设备,于1991年末首次试飞。“狂风”对地攻击机无论是在昼间、夜间和复杂天气条件,也无论是以高速或低速飞行,它都投放各种精确武器。其拥有的高精度攻击武器和精确导航系统,可保证它有效攻击隐藏在浓雾中的目标,或者有效攻击那些以高速飞行的低噪音和低振动强度的目标。机上有先进的地形自动跟踪系统,可保证飞机在低空以跨音速突防。地形测绘和地形跟踪雷达由美国得克萨斯仪表公司研制,批产由英国费伦第公司和马可尼公司负责。

导航/攻击计算机来自英国利顿公司的德国子公司。有强大的火力,最大载弹量达9000千克,占最大起飞重量的三分之一。该机装有2门27毫米口径“毛瑟”机炮,可各备弹188发。还设有7个外挂架,机身下3个,两翼下各2个。根据不同任务,这些挂架可挂带多种武器,如:用于对地攻击可挂带AS30、“小牛”、GBU-15“海鹰”和“鸬鹚”等空对地导弹;专门用于攻击地面雷达等设施的ALARM和HARM反辐射导弹;LAU-51A和LR-25火箭发射器;JP233反机场跑道子母炸弹、“铺路”激光制导炸弹、“灵巧’炸弹、各种集束炸弹、减速炸弹、MK83炸弹,及燃烧弹、照明弹等。需要时,机身挂架也可挂带核弹。用于对空作战,则可挂半主动雷达制导的“天空闪光” 中距空对空导弹,以及AIM-9L“响尾蛇’和“麻雀”等空对空导弹。

2002年7月意大利空军与帕那维亚集团签署了价值4500万美元的合同,改进意大利的IDS型,计划称为实施中期寿命改进(MLU)。改进将综合GPS、激光制导炸弹及防区外武器,包括“风暴影子”。无线电、雷达高度表及战术空中导航“塔康”系统也将改进。预计2004年完成。

改进型(FULL MLU)改进计划也在研究之中。此外,“金牛座”(Taurus)撒布器也在装备之列,射程350,可携带450千克弹头,有末制导头。德国将在2004~2009年采购600枚,瑞典仍在决定是否进行采购。2003年3月,英国皇家空军的“狂风”在对伊拉克的“震慑”行动中,首次使用了“风暴影子”。 防空型 (ADV)。在基本型 IDS 基础上发展的防空截击型。装备英国和沙特空军。1985 年开始交付使用。ADV 型总共生产 197 架。与基本型相比,具有更好的爬高率和加速性能,能携带更多的电子设备,内部燃油量也增加了 10%。

是在对地攻击型的基础上研制发展的型号,1979年10月原型机开始试飞,1984年3月生产型首次试飞,总共生产了197架。英国和沙特阿拉伯空军各装备173架和24架,分别于1985年和1989年开始交付。

防空型具有很好的加速性,它不仅体现在起飞后能很快加速到高亚音速,而且在高空也能很快加速到音速的两倍;爬升性能好,从起飞爬升至近10000米高度,仅约2分钟;具有较大作战范围和较长的留空时间,可在距基地约550公里处作战巡逻两个小时以上,英国空军装备的该型机,能飞赴英国国境外的空域执行拦截任务;机动性好,转弯角速度快,具有较好的空战机动能力。设计赋予它这些性能特点,主要是为防范当时苏联的图-20和苏-24一类飞机。该机结构有80%与对地攻击型相同。

主要改动是机头加长了488厘米,以容纳“猎狐手”空对空新型截击雷达。该雷达不仅能探测到185千米距离的目标,而且还能同时跟踪多个目标;主要机载设备还包括多功能前视,地形跟随/测绘雷达、三轴数字式惯性导航系统,防空型装有多功能脉冲多普勒雷达、无线电/雷达高度表、自动驾驶仪飞行导引仪、雷达告警接收设备和主动电子对抗设备;机翼固定段前缘向前延伸,使前缘后掠角从印度增加到67度,并取消了前缘襟翼;中、后机身加长了7112厘米,以便使机腹能串挂成对的半埋入机腹的4枚“天空闪光”导弹,同时也增加了多带电子设备的能力,内部也可多装10%的燃油。此外,还去掉了前机身左下方的27毫米口径“毛瑟”机炮。

“猎狐手” 机载截击雷达英文名Foxhunter,最初的62架ADV装备W型,最后的46架装备的是AA型,其他80架装备的是Z型,沙特的24架装备的是AA型。马可尼-埃利奥特公司是该雷达的主承包商,费伦第公司负责扫描器部分。1976年马可尼公司开始研制。由倒置卡塞格伦天线、相干行波管发射机、接收机、信号数据处理机、控制装备和电源装备组成。对“逆火”、“击剑手”等中型目标搜索距离180千米以上。

模式包括空对空搜索、自动跟踪、瞄准、空对地测距、地形测绘等。英国空军的防空截击型有FMk2和FMk3两种编号:前者于1984年至1985年间交付,共生产了18架;后者于1986年开始交付,共生产了155架。与FMk2相比,FMk3换装了功率更大的发动机,并装有机翼自动后掠系统(AWS)和自动机动系统(AMDS),可自动控制机翼掠动和襟翼、缝翼的运动。以后他们又按FMk3的标准对FMK2型机进行了改进,但发动机不换,改进后的编号为FMK2A。“狂风”FMK2机身下有4个半埋式挂架,每个挂1枚“天空闪光”中距空对空导弹,机翼下挂架是1500升副油箱的专用挂架。这个挂架过渡梁的肩部内侧可挂1枚“响尾蛇”导弹。

典型的火力配置是1门机炮和6枚空对空导弹,包括4枚“天空闪光”中距导弹和2枚“响尾蛇”导弹。“狂风”FMK3机翼下增加了两个挂载“响尾蛇”的挂点,使挂载的导弹数量增加到8枚。在中期改进计划中将增加挂载AIM-132近距空对空导弹(ASRAAM)和AIM-120先进中距空对空导弹(AMRAAM)的能力。电子战及侦察型(ECR)由对地攻击型改型而成。主要改进是去掉了前机身下的两门机炮,增装了侦察及电子战设备,例如,红外侧视系统和“线扫描”4000型侦察系统,红外成像系统、侦个信息的处理、存贮和发射系统,以及电子对抗和反电子对抗吊舱、该机保留了对地攻击能力,但采用了新的机载计算机和传感器系统,装备了HARM高速反雷达导弹和空对地反雷达导弹。此外,还可挂带2枚“响尾蛇’空对空导弹,以便在需要空战时使用。

英国、德国和意大利空军装备数量分别为30架、35架和16架。

狂风ADV的航程和飞行速度非常适合拦截苏联远程轰炸机的任务要求,狂风ADV和F-14虽然的是用来对抗携带超音速导弹的苏联轰炸机,但是狂风ADV拦截轰炸机使用的机载武器只是半主动中程空-空导弹,缺乏美国海军F-14拥有的“不死鸟”这样的远程导弹武器。 狂风战斗轰炸机的标准作战剖面是飞机起飞后以巡航高度飞行到前线,随后在低空以接近音速的高速飞行突破防空系统的拦截,当攻击完成后再以低空返回到安全位置后拉起返航。低空突防机动战术明显的降低了被对方传感器发现的概率和减少了飞机在防空系统中暴露的时间,显著的增加攻击机的战场生存能力的同时,也使攻击机更加依赖传感器探测目标并降低机载导弹武器的有效射程。

低空突防战术的使用同时降低了地面防空系统和攻击机的反应时间,增加了攻击飞机对地作战的难度。虽然持续的低空突防对飞机的作战效能要造成不利的影响,但是飞机生存力的提高仍然使采用低空突防的战术具有很强的吸引力。

低空突防是狂风IDS的主要战术,但也因此在海湾战争中遭受损失。 RB199发动机的反推挡板,可以大幅降低降落滑跑距离。为了提高狂风IDS的快速部署能力和降低对机场跑道的依赖性,狂风系列飞机在综合采用可变后掠机翼设计和发动机反推力装置后,在紧急情况下只需要800~1000米的跑道长度就可以满足对机场条件的需要。

RB199是由英国、联邦德国和意大利合作研制的高推重比加力式涡轮风扇发动机,作为狂风战斗轰炸机配套动力系统的RB199在1969年开始设计, RB199的原型发动机1974年装在狂风原型机上进行飞行验证,实用型RB199到1980年开始随狂风飞机的交付开始服役。RB199涡扇发动机主要装备了狂风IDS/ADV等系列改进型,RB199 MK103装备狂风IDS/GR MK1,推力增强的RB199 MK104装备狂风ADV/F MK1/MK3,RB100 MK105计划装备狂风ECR电子支援飞机。RB199取消喷口反推例装置后的RB199 MK104D还作为EAP和EFA使用的EJ200完成前的过渡动力装置。

狂风在短距起飞时需要发动机满足短时间内快速达到最大加力推力,执行低空高速突防和巡航时需要持续稳定的军用推力,在规避防空火力和飞机进行大载荷机动时要保持较大的剩余推力。RB199为了满足狂风执行不同作战任务时对发动机所提出的要求,采用三转子结构的RB199对于操作变化的响应速度快,并且采用了高增压比、高推重比、高涡轮前温度的“三高”措施,综合各种先进技术后的RB199发动机推重比可以达到793的高指标。RB199属于比较少见的无进口导流叶片的三轴加力式涡扇发动机,但是因为狂风在发动机与进气道是设计上进行了细致的考虑和充分的试验,因此RB199的进-发匹配工作经实际使用证明是成功的。RB199发动机在狂风飞机上不但能够经受低空持续飞行的气流干扰,而且发动机的油门可以在电子控制系统的辅助下进行自由调节。

狂风ADV需要比IDS有更大的发动机推力来满足超音速拦截的要求,而且在改进设计中狂风ADV增长的机体也有足够的空间容纳更大体积的发动机,为狂风ADV改进设计的RB199MK-104 在保持MK103基本设计的基础上,将加力燃烧施加长14英寸以提高发动机加力推力和降低耗油率。 RB199最大推力起飞耗油率推重比空气流量涵道比增压比涡轮前温度最大直径(M)长度(M)  重量(KG)MK10371100662793 731 10823513270719325915MK10472490662762108071936976MK10574700663778097075233980图注:RB199服役型号基本数据表格(数据来源《世界航空发动机手册》)

冷战期间欧洲地区高密度的远程打击力量使战区范围内任何机场都没有真正安全可言,即使是再好的伪装手段和再坚固的堡垒也无法隐蔽目标明显的机场跑道,既然事实已经证明垂直起降战斗机在性能上无法满足要求,那么保证战术飞机具备可靠的短距离起降能力则是冷战对抗双方共同的观点。

发动机推力不平衡会产生危机飞机着陆安全性的推力差异,因此狂风采用双发动机的设计特点对反推力装置的可靠性有很高的要求,电子控制系统可以随时监控反推力装置的工作情况,双发反推力装置的者流板打开速度和角度出现不同步则可以在05秒内迅速收回。采用反推力装置使狂风在着陆滑跑距离上大幅度缩短到600米以内,甚至比体积远小于它并同样有较好着陆能力的“美洲虎”还要好,这样好的着陆性能作为远程重型战术攻击机来说是极其有利的,反推力装置在战场生产能力上的收获远大于在重量和成本上的付出。 采用一机多型设计思想的狂风按照任务要求采用不同的雷达火控系统,这是因为欧洲国家在设计狂风的时候没有具备可靠地形跟随功能的机载雷达系统,因此狂风IDS通过从美国引进雷达系统来满足战斗轰炸机的雷达要求。上世纪80年代初期的机载多功能火控雷达的性能远不够完善,就是当时的美国号称多功能的AN/APG-65/68/70也算不上真正的多功能,美国空军采用多功能雷达的F-16C/F-15E和海军的F/A-18在执行对地攻击任务时,都需要外挂导航吊舱来弥补机载雷达地形跟踪能力不足的缺陷。欧洲国家当时所能够获得的雷达系统在技术性能上远不如美国,所以不可能将狂风IDS的低空地形跟随与狂风ADV中距拦射功能集中到一套系统中,因此狂风IDS和狂风ADV采用了完全不同的两套雷达系统来满足各自的作战要求。  

狂风IDS装备的Tornado多用途前视地形测绘雷达系统应用了椭圆形雷达天线面,多用途前视地形测绘雷达在作战中进行测绘、识别和瞄准地面(空中)目标,同时为机载武器提供目标的距离和角度信息。地形测绘雷达的主要作用方式有:搜索和跟踪空中目标并进行测距和角跟踪,地形测绘(宽/窄、快/慢扫描,波束锐化和分解),地面目标的搜索和测距,更新导航数据,地面目标锁定,等高面测绘(作为地形跟踪雷达和后备系统),寻地干扰和信标功能。前视地形测绘雷达系统采用了宽带行波管发射机和平面天线阵,雷达系统依靠脉冲压缩和频率捷变技术来对抗电子干扰。

狂风IDS的地形测绘雷达的综合性能与美国F-111战斗轰炸机基本相当,对地面目标有比较好的搜索和跟踪能力,在机载导航系统协作下可以对地面固定和活动目标有很高的探测精度。对于计划攻击的目标,狂风IDS可以采用低空高速直线通过的方式投掷低阻减速炸弹或进行上仰投弹,对于防空火力不强的目标也可以进行俯冲投弹攻击。对于战场上的活动目标可以使用火箭和炸弹以连续计算弹着点的方式进行攻击。

地地形跟踪雷达和机载计算机系统可以根据地形条件,将飞机的突防高度设定在距离地面61米到457米之间,飞机在进行地形跟踪突防时的最大飞行速度可以达到M12。狂风IDS的飞行员在地形跟踪突防时可以选择不同的操纵品质,采用“硬乘座”品质的地形跟踪性能最好,但是“硬乘座”品质产生的-095的垂直加速度要牺牲飞行员的乘座舒适性,而采用产生-0 5垂直加速度的“软乘座”品质的地形跟踪突防效果相对要差,但是飞行员体力消耗较小。狂风IDS的飞行员在低空高速突防过程中可以灵活的选择不同的操纵品质,采用“软乘座”提高飞行员在执行纵深突防任务时的持续飞行能力,而在接近目标时采用“硬乘座”操纵品质来提高狂风IDS的突防成功率。

狂风ADV是英国皇家空军用来担负远程防空任务的超音速拦截战斗机,因为狂风ADV的作战任务对机载雷达的要求上与IDS存在明显区别,当时的欧洲国家也不具备发展多功能火控雷达的条件,所以英国为狂风ADV的需要研制的AI-24机载火控雷达。AI-24雷达系统的原理样机在1979年开始进行空中试验,装备狂风ADV的生产型在1984年开始交付英国皇家空军。AI-24 (FoxHunter)是采用脉冲多普勒体制的多功能机载截击雷达,具备在远距离上同时对多个空中目标进行搜索和跟踪的能力,狂风ADV执行全天候拦截任务时采用“天空闪光”半主动雷达制导导弹与AI-24配合使用。

AI-24雷达系统采用的是相对沉重和技术略显落后的卡塞格伦天线,卡塞格伦天线由前方双曲面反射体和抛物面后反射体组成,但是脉冲多普勒体制的雷达系统具备较好的下视搜索和跟踪能力,在采用雷达导引空空导弹时具备连续攻击多个目标的能力。AI-24雷达系统采用的倒置卡塞格伦天线的直径为80厘米,对5平方米反射面积的空中目标有185千米的最大探测距离(目标发现概率80%)。AI-24雷达可以对抗常规阻塞式和瞄准式电子干扰手段的影响,在遭受电子干扰的情况下还可以根据干扰情况确定干扰源位置,在全天候拦截过程中可以抵抗苏联轰炸机机载常规电子对抗系统的影响。AI-24雷达系统可以满足中距离拦射导弹顺序攻击多个目标攻击的要求,在近距离格斗空战中能够与可离轴的格斗弹配合使用,并且能够配合平视显示系统为航炮攻击空中目标提供瞄准信息。

狂风ADV采用AI-24雷达对大型轰炸机的探测距离可以超过150千米,但是对半主动雷达制导空空导弹的制导距离只有不足30千米,因此狂风ADV即使拦截轰炸机也难以实现真正的远程打击,这个问题直到狂风ADV装备AIM-120主动雷达制导导弹后才被改变。AI-24雷达天线的体积和尺寸规格远比IDS上的对地雷达天线大,因此装备AI-24的狂风ADV拥有一个明显比IDS尖细的雷达天线罩,这也是远距离上分辨狂风IDS和ADV的最明显特征。 狂风采用全金属半硬壳结构的机体,狂风截面尺寸较大的机身具有很大的内部空间,在机身中段上方还有高强度的中央翼盒和转轴机构。

  为了提高对狂风电子系统的维护和保养能力,机头的雷达天线罩可以向侧面打开,雷达天线也可以折转,前机身侧面设计有大开口以便对航空电子设备进行检测。狂风的机身设置有大量的检查口盖,全机开口率较高,可以方便在设施简单的野战机场对飞机进行地面维护和保养。

狂风采用上单翼的设计使机身的检察口盖大都处在维护人员可接触位置,在野战机场使用时不依靠专用保障设备就可以完成飞机维护和作战中的大部分准备工作。狂风IDS长度为1672米的机身横向宽度较大,机身下表面形成一个简单的平面,机身下可以安装大规格的外挂武器和副油箱。狂风ADV为了在机身下安装串列布置的“天空闪光”空空导弹和增加飞机内部燃料携带量,将机身的长度增加到了 1808米。狂风的机身中段设置有可边后掠机翼结构的高强度整体转轴,贯穿全机的转轴外侧直接与可动外翼段联接。机身后部上方设置有2块向上打开的大面积的单片减速板,减速板由复合材料制造。

机体结构上以铝合金为主,部分采用了合金钢,在高受力的中央翼盒和机翼转轴部位应用了高强度的钛合金,复合材料应用范围不大,主要用在机翼固定段的密封带和减速板上。狂风战斗机的空机重量(具体数据为狂风IDS)为14091公斤,其中飞机结构重量为7273公斤,结构重量系数为000052。动力装置的重量为2727公斤,机载设备重量3182公斤,机载固定武器重量为264公斤,基本空机重量为13446公斤,其他625公斤的空机重量为氧气、滑油等消耗品和200公斤的航炮弹药。

狂风在机身两侧安装有带有可调节斜板的矩形多波系进气道,进气道在飞行时可根据飞行条件的变化自动调节,能够适应狂风在不同速度和高度条件下飞行时的进气需要。

狂风的进气道采用了独立的电动防冰装置,防冰装置的加热区布置在进气道前缘和两侧靠前方的位置。 狂风在确定基础设计的70年代初期,要使飞机平台保证在200公里/小时到M2的整个速度范围内都具有良好的飞行性能,同时满足飞机的短距离起落、大航程、高空超音速和低空高速度突防的任务要求在气动结构上产生的矛盾,在技术上唯一可以满足要求的就是采用可变后掠机翼。

狂风在翼面设计上采用了当时战斗轰炸机上流行的可变后掠角的上单翼,大面积的单垂尾和低置平尾。狂风IDS的变后掠翼角度变化范围是25度到68度,狂风IDS的机翼后掠角在飞行员的控制下可进行无级调节。

狂风IDS的机翼可动部分控制机构不具备与F-14类似的与飞行控制系统综合后自动调节机翼后掠角的能力,而在英国发展的狂风防空型上则安装有自动机翼后掠控制(ASW)和与机翼角度控制综合的自动机动控制(AMDS)系统,可以通过飞行控制计算机自动控制机翼角度的变化,这一设计使狂风防空型在机动性上比狂风对地攻击型有了明显的提高。狂风的变后掠机翼系统在结构和技术标准上与F-14基本相当,比苏联发展的米格-23、苏-17和苏-24系列战术飞机上的变后掠翼系统要先进和完善的多。狂风的机翼固定段前缘有60度的后掠角(防空型提高到67度),活动翼面前缘安装有3段式前缘缝翼,在后缘安装有4段式双缝襟翼。因为变后掠翼的结构限制,在狂风飞机的机翼可动段上没有设置进行滚转控制的副翼系统,飞机的横滚操纵在小后掠角的时候依靠机翼上表面的扰流片来操纵,这个扰流片在飞机降落时还可以作为减速板使用,而在飞机大后掠角飞行时的滚转控制能力是依靠全动平尾差动控制得到。

低置平尾在飞机进行大迎角机动时处于较小的机翼下洗梯度流场之中,将可以提供较好的安定性和有效的消除机动过程中的上仰力矩狂风飞机上安装的大面积垂尾使飞机在执行高速拦截或在大负荷低空突防任务中,都具有很好的方向安定性,在垂尾上方还安装有电子对抗系统的非金属天线罩。 狂风ADV的机载固定武器只有机身右下侧的1门27毫米航炮,延长的机身下可以采用半埋方式外挂4枚空空导弹,机身下并排串列挂载的空空导弹的方法与F-4“鬼怪”II类似,在机翼下挂点上还可以挂载自卫用红外格斗弹,经过现代化改进后能够挂载AIM-120和ASRAAM先进格斗空空导弹。

狂风IDS的机身和机翼挂点可以挂载副油箱(机身油箱1500升、机翼油箱2200升),狂风ADV因为机身外挂点调整后无法挂载副油箱,但是机翼下的4个挂点都可以挂载大容量的副油箱。电子战改进型狂风ECR保持了狂风IDS的外挂载荷和对地攻击能力,通过改进电子系统和加强电子侦察与干扰吊舱的携带能力,更有利于机载HARM、ALARM反辐射导弹对地面雷达系统的攻击,有效提高了狂风ECR独立执行反雷达作战和伴随支援方面的作战能力。

挂载两枚ALARM反辐射导弹和12枚硫磺石导弹的狂风GR4,狂风平坦的机腹可挂载大型对地武器,弥补的机翼挂架的数量不足。

  

武器对地攻击型:装两门 27毫米“毛瑟”机炮,备弹量 2×180发。外挂架共 7个,机身下3个,翼下每边各2个,能携带多种武器,主要有 :“响尾蛇”、“天空闪光”、“麻雀”等空-空导弹; AS30 、“幼畜”、 GBU-15 、“海鹰”、“鸬鹚”等空 - 地导弹; ALARM或 HARM反辐射导弹; MW-1多用途武器,JP233低空战场攻击武器 “铺路”激光制导炸弹、照明弹、 MK83 和其他 454千克炸弹;LAU-51A 和 LR-25火箭发射器;还可挂电子对抗吊舱。此外,机身挂架可带 1500升副油箱,内翼挂架可带 2250 升副油箱,机身挂点上可带核弹。

防空型:一门 27毫米“毛瑟”机炮装在前机身的右下方。4 枚半主动雷达制导的“天空闪光”中距空空导弹半埋式成对串挂于机腹下,每个内翼挂架均可挂 1 ~ 2 枚AIM-9L“响尾蛇”导弹,4个翼下挂架均可带副油箱。可以携带AIM-120 先进中距空空导弹 (多达 6 枚) 及先进近距空 - 空导弹 (可带4 枚)。电子战型:除了去掉两门机炮外,保留其余的对地攻击能力,并可携带两枚“响尾蛇”空空导弹。

狂风IDS在对机场进行攻击的时候,通常使用专门研制JB233反跑道子弹药布撒器,每个JB233反跑道子弹药布撒器重量为2500公斤,内部携带两种弹药,一种是在弹箱后部的30枚SG357反跑道子炸弹,另外一种是215枚带有延时引信的HB876小型杀伤地雷,每架执行反跑道任务的狂风在机身下部携带2具JB233反跑道子弹药布撒器,可以在跑道上一次投下60枚反跑道炸弹和430枚地雷,不但可以在跑道上形成密集的弹坑,彻底破坏跑道的道面,还可以用大量的地雷来干扰对跑道的修复工作。

德国空军的狂风IDS还可以使用多用途的MW-1子母弹箱,MW-1子母弹箱空重1200公斤,弹舱内部有224个弹筒,满载的MW-1弹箱的重量可以达到4700公斤。在MW-1子母弹箱内部的弹筒内可以分别使用KB44双用途子弹药、MIFF反坦克地雷、MOSPA、MUSA杀伤地雷、STABO反跑道炸弹和具备打击坚硬掩体能力的ASW反掩体破坏弹,通过燃气控制子弹药弹射器可以使子弹药散布范围控制在最大2500米×500米,最小200米×50米之间。如果MW-1全部装载KB44双用途子弹药时最多可以装载4704枚,能够对弹药密集散布范围内的暴露装甲目标和软目标造成密集的杀伤区。但是WM-1存在和JB233一样的问题,就是只有在低空使用时的效果才比较好,这个缺陷在海湾战争中给狂风带来了较大的损失。

狂风IDS采用的突防手段仍然是利用地形跟踪进行长距离低空高速突防,机载对地(坦克、机场等面积目标)攻击武器以常规炸弹为主。

(对地攻击型)

(高-低-高) 1390公里

(低-低-低) 883公里

截击半径(防空型,超音速) 556公里

(防空型,亚音速) 1853公里

续航时间(距基地560~740公里,含10分钟战斗时间) 2小时

限制过载 +75g

(快速滚转) +40g

类型简写:AVG/ADV

应该说这两款是性能非常接近战机,欧洲“台风”在雷达、发动机和武器上略占优势。 欧洲“台风”战斗机广泛采用碳素纤维复合材料、玻璃纤维增强塑料、铝锂合金、钛合金和铝合金等材料制造,复合材料占全机比例约40%。采用一些隐形技术,包括低雷达横截面和被动传感器。前置鸭式三角翼构造空气动力学不稳定设计提供高度的敏捷性(特别在超音速)、低空气阻力和可提高升力,机翼使用无缝隙襟翼。飞行员通过每秒自动控制40次的飞行控制计算机和全权4余度主动控制数字式电传系统控制飞机去提供好的飞行控制特性。在不使用矢量发动机的情况下就具有优异的超机动性能,得益于良好的机身设计,不但维持高速优异操纵性、也具有很好的缠斗能力,特别是高速高过载缠斗。为增加航程,还具有空中加油能力。 欧洲“台风”战斗机安装一套CAPTOR ECR 90多模式X-波段脉冲多普勒雷达,是由欧洲雷达公司(Euroradar)合作发展,最大探测距离约150公里,据称是目前扫描最快的机载机械扫描雷达,具有极高的数据更新率。ECR 90多模式雷达有三个处理信道,第三个信道作为干扰机分级、干涉消隐和旁瓣无效。欧洲雷达公司(Euroradar)由英国宇航公司(BAE)、西班牙的英迪拉(Indra)系统公司、意大利FIAR公司和欧洲航宇防务(EADS)德国分部合作组成。EUROFIRST公司被动红外机载跟踪装置(PIRATE)安装在机身左舷风挡玻璃前面。EUROFIRST公司由意大利Galileo Avionica (FIAR) ,英国泰利斯光电子技术公司和西班牙Tecnobit公司合作组成。被动红外机载跟踪装置(PIRATE)能在3-5 和 8-11微米两种光谱带工作。当在空对空任务中使用,它如一个红外搜寻和跟踪系统 (IRST) 的职能,提供被动目标探测和跟踪;在空对地任务中,它履行多目标捕获和辨识,也提供导航和降落帮助功能,还提供一个易操纵的图像到头盔安装显示器上。 欧洲“台风”战斗机安装2台欧洲发动机公司(Eurojet)EJ200 双轴涡扇发动机(加力燃烧室),推重比9。最大的静推力2 x 60千牛顿 (13,490磅),加力推力2 x 90千牛顿 (20,250磅) 。采用数字控制和综合最佳状态监视系统,单晶涡扇叶片,一个收敛/扩散排气喷嘴。1998年开始设计矢量喷嘴,除了增加机动能力,主要用于能够更短距离起飞来实现上舰操作,目前EJ-200还在进行推力提升改进。 欧洲“台风”战斗机机内安装一门27毫米毛瑟机炮,用于武器携带共有13个挂点,每个机翼下各有四个,进气道正下方一个,进气道两边角落各两个半埋式挂点(装备超视距空空导弹)。一套武器控制系统(ACS)管理武器选择、发射和监控武器状况。欧洲战斗机能使用广泛多样性空对空和空对地武器。 1、机载武器的最大限度。具体如下: ·6 x AIM-120“先进中程空空导弹”(AMRAAM)或欧洲导弹设计局(MBDA)“流星”(Meteor)中程空对空导弹(现处在发展中) ·6 x AIM-9 “响尾蛇”(Sidewinder)或欧洲导弹设计局(MBDA)“先进近距空对空导弹”(ASRAAM)或德国博登湖机械技术公司(BGT)IRIS-T近距空对空导弹 ·4 x ALARM反辐射导弹 ·4 x “企鹅”(Penguin)空对地导弹或波音鱼叉(Harpon)反舰导弹 ·18 x “硫黄”(Brimstone)反坦克导弹 ·2 x欧洲导弹设计局(MBDA)“风暴阴影”(Storm Shadow)或LFK“金牛座”(Taurus)远距离投射武器 ·4 x Paveway GBU-10/16激光制导炸弹(使用指示吊舱) ·6 x BL 755集束炸弹 ·12 x 500 –2,000 磅常规炸弹 ·4 x布里斯多航空宇宙公司(Bristol Aerospace)CRV-7火箭吊舱 ·3 x外部燃料箱 2、机载武器的典型组态 欧洲“台风”战斗机武器最大负载是不能被同时携带的,根据作战需要选用不同的典型组态。具体如下: ·3 x AIM-120 “先进中程空空导弹”(AMRAAM),2 x AIM -9,1 x激光指示吊舱和 4 x GBU12 炸弹,3 x外部燃料箱 ·4 x AIM-120“先进中程空空导弹”(AMRAAM),2 x AIM -9,1 x油箱,6 x “企鹅”空对地导弹(ASM) ·4 x AIM-120“先进中程空空导弹”(AMRAAM),2 x AIM –9,1 x 1,000磅外部燃料箱,2 x 1,500磅外部燃料箱,4 x “企鹅” 空对地导弹(ASM) ·4 x AIM-120“先进中程空空导弹”(AMRAAM),2 x AIM -9,1 x外部燃料箱,5 x 450公斤炸弹 ·4 x AIM-120“先进中程空空导弹”(AMRAAM),2 x “先进近距空对空导弹”(ASRAAM),2 x 1,500磅外部燃料箱,1 x 1,000磅外部燃料箱,2 x ALARM反辐射导弹,2 x “风暴阴影”巡航导弹 ·4 x AIM-120“先进中程空空导弹”(AMRAAM),2 x “先进近距空对空导弹”(ASRAAM),1 x 1,000磅外部燃料箱,18 x “硫黄”反坦克导弹 ·4 x AIM-120“先进中程空空导弹”(AMRAAM), 2 x “先进近距空对空导弹”(ASRAAM),1 x 1,000油箱,6 x ALARM反辐射导弹 · 6 x AIM-120“先进中程空空导弹”(AMRAAM),2 x AIM-9 L ,2 x “铺路”(Paveways)激光制导炸弹,2 x 外挂油箱·4 x AIM-120“先进中程空空导弹”(AMRAAM),2 x “先进近距空对空导弹”(ASRAAM),2 x ALARM反辐射导弹,4 x“铺路”(Paveways)激光制导炸弹,在机身下面1个外挂油箱。 MBDA公司、EADS CASA公司、INMIZE公司和萨伯动力公司共同研制的“流星”(Meteor)中程空对空导弹,采用冲压/火箭复合推进,计算机自动调节推力,使用中段指令修正、末段主动方式导引,最大射程超过100公里。欧洲导弹设计局(MBDA)ASRAAM是欧洲新一代近距格斗空对空导弹,据称在英国空军鉴定中,该导弹的截获与跟踪距离是AIM-9导弹的2倍,在绝大多数情况下都是首发命中目标,增强了飞机的作战能力;另一种是由德国博登湖机械技术公司(BGT)研制的“虹膜”(IRIS)-T(红外成像系统-尾翼推进矢量控制)先进近距空对空导弹,采用推进矢量控制技术,IRIS-T导弹具有高度的灵活性、正负90度的寻的器离轴视角、发射后锁定目标能力、防对抗图像处理能力。 德国毛塞公司BK27“毛塞”机炮是一种转膛炮,其特点是采用闭合无链供弹系统,消除了抛弃弹壳和弹链时造成的危险,使现有系统的体积减小60%。 欧洲导弹设计局(MBDA)“硫黄”(Brimstone)反坦克导弹是在美国“海尔法”反坦克导弹基础上研制的,提高昼夜、全天候条件下的自主式攻击能力,并增大导弹射程。 欧洲导弹设计局(MBDA)“风暴阴影”(Storm Shadow)是世界上第一种隐形巡航导弹,该导弹系统飞行中段采用GPS全球定位加地形景像匹配制导,末段采用红外成像精确制导,因而具有极高的打击精度。同时,“风暴阴影”还大量采用了人工智能技术,可以自动识别目标,避免造成不必要的损失,因此也被许多军事专家称作目前世界上最完备的隐形导弹。 德国LFK和瑞典萨伯研制的“金牛座”(Taurus)导弹,射程350公里,可携带450千克弹头,具有末制导能力。 最高飞行速度:马赫 20+;低高度最大速度:1,390公里/小时(750节当量空速KEAS);最小速度:203公里/小时(110节当量空速);实用升限: 16,765米 (55,000英尺);计时到35,000英尺(10,600米) /马赫15:25 分钟;起飞距离:<700米;降落距离:<700米;作战半径:3,700公里(2,000海里); 中途拦截使用10 分钟巡逻>750海里 (1,390公里);在定点附近空中巡逻3个小时>100海里 (185公里);地面攻击,高-低-高飞行轨迹>750海里 (1,390公里);地面攻击,高-高飞行轨迹>350海里 (650公里) 欧洲“台风”战斗机据称具有F-22的90%空战能力以及远超过F-22的对地攻击能力。计划生产620架,其中英国订购232架、德国180架、意大利121架和西班牙87架。另外,奥地利已经决定购买24架“台风”战斗机。虽然希腊决定推迟购买60架“台风”战斗机,从性能来看,将会赢得更多的外销定单 “阵风”是法国达索飞机制造公司为满足法国海军和空军的需要,研制和发展的双发多用途超音速战斗机,该机可以在昼 夜、以及各种气象条件下完成从对地攻击到空中优势的各类任务。该机采用先进的“三角鸭翼近距耦合”气动布局和数字 式电子飞行控制系统,有很好的操纵性和稳定控制能力,大量应用碳纤维复合材料,装备有推重比为10一级的发动机,推重比 大、机动性和敏捷性好,可短距起降,具有超视距作战能力和一定的隐身能力等部分第四代战斗机的特点。该机共有4种型号: 双座空军型;阵风C,单座空军型;阵风D,单座空军隐身型;阵风M,单座海军型。该机除满足法国海军空军的需要外,还将 出口到其他国家。动力装置2台斯奈克玛M88-2加力涡扇发动机,单台静推力为 487千牛,加力推力729千牛。生产型飞机将装最大推力为87千牛的M88-3发动机。主要机载设备 汤姆逊-CSF/达索电子技术公司的 GIE RBE2下视/ 下射雷达,采用相控阵天线,具有地形跟踪能力,可同时跟踪 8个目标,并可评估危险程度,确定优先攻击目标。多功能通讯、数据链路系统,“西格玛” RL90惯性导航系统,GPS 以及先进的座舱显示设备等。武器:1 门30毫米盖特“德发”机炮。14个外部挂架,2 个在机身中线,2个在发动机进气道下,2个并排在后机身,6个在翼下,2个在翼尖,阵风M取消了机身中线前部的挂架。可以携带现有和在研的各种武器,执行截击任务时可携带 8枚“米卡”空空导弹和 2个翼下副油箱,执行对地攻击任务时可携带 16颗227 千克炸弹、2 枚“米卡”空空导弹和2 个1300升的副油箱,对海攻击时携带两枚“飞鱼”导弹或计划中的ANS掠海飞行导弹、 枚“米卡”导弹和4300 升的副油箱。重量及载荷: 基本空重,阵风D 9060千克,阵风M 9670千克。外挂载荷(最大)8000 千克,(正常)6000 千克。最大停机重量,原型机19500 千克,发展型21500 千克。性能数据: 最大平飞速度(高空)M2,(低空)1390千米/小时。进场速度213千米/小时,起飞滑跑距离(对空防御)400 米,(对地攻击)600米。作战半径(低空突防,带12 颗250千克炸弹,4枚“米卡”空空导弹以及总容量 4300升的3个副油箱)1093千米,(远程空中截击,带8枚“米卡”空空导弹以及总容量6600 升的4个副油箱, 12200米高度)1852千米。限制过载,+90/-36g

  巡航导弹是1991年海湾战争的几大”明星”武器之一,此后,作为美国对外用兵的”急先锋”,几乎每一次由美国主导或参与的军事行动(或许只有在索马里的特种作战行动除外)中,我们都可以看到巡航导弹的身影。作为一种远程精确攻击武器,巡航导弹作为美国”非接触打击”的主要手段,显示了巨大的威力。我国科研人员也一直关注着巡航导弹的发展,至今已研制出数个系列、多种型号的巡航导弹,在第六届珠海航展上,”飞豹出口型”的模型上挂载了两枚”空射巡航导弹”,引起人们的高度关注。由于保密的需要,外界对我国巡航导弹的具体情况知之甚少,我们在这里通过对公开资料的解读,对国产巡航导弹的发展情况做一个简单而浅显的分析和猜测。

  我国的飞航式导弹是以苏联SS-N-2”冥河”导弹为基础发展而来的,最初是”上游”和”海鹰”两大系列反舰导弹。”上游”系列装备国产第一代导弹艇和导弹护卫舰,国产第一代导弹驱逐舰则装备了”海鹰”系列。在”海鹰”系列反舰导弹的基础上,我国科技人员开发了称为”鹰击”一6系列的空射型号,由国产轰-6战略轰炸机发射。后来,通过获得的一部分”鱼叉”反舰导弹的技术资料,我国又开发出”鹰击”-8系列反舰导弹,这些都成为了国产巡航导弹发展的重要基石。

  海湾战争以后,我国科技人员展开了对地攻击巡航导弹的研制工作。应该说,对地攻击巡航导弹和飞航式反舰导弹之间并没有多大的本质差别,飞航式反舰导弹更强调空中机动性能(要面临舰上火力的拦截),采用主动雷达制导,对制导系统精度要求较高,对射程要求相对较低;而对地攻击巡航导弹,不怎么强调空中机动性能,但对射程和威力要求更大,对制导系统的精度和跟踪能力要求相对低些,但制导系统作用距离要求更远,使投送平台能在敌方打击范围之外较安全地发射。有资料证实,我国早期的巡航导弹型号正是由”鹰击”-6和”鹰击”-8两个系列发展而成,通过换装小型涡喷发动机和GPS或地形匹配导引头,其射程和精度虽然不能和大名鼎鼎的美国”战斧”巡航导弹相比,但已经可以满足部队的基本需要。2001年我国购入苏-30MKK战斗轰炸机之后,也一并获得了配套的Kh-59ME防区外巡航导弹,这或许是我国科研人员第一次接触到世界水平的远程巡航导弹,此后通过科技人员的不断努力和与友好国家的技术合作,我国巡航导弹的发展进入了一个崭新的时期。

  2000年左右,外界开始流传我国开始装备一种名为”红鸟”的巡航导弹,并且宣称其”射程达到1000千米以上,有超音速的发展型号”。2004年8月,我军在一次演习中发射了一枚远程巡航导弹,外电报道称该弹”非常精确地击中了1500千米以外的海上目标”,并且认为这种巡航导弹名为”东海-10号”,射程近2000千米,命中精度在15米以内,后来甚至有传闻说我国获得了俄罗斯Kh-55和以色列”达莉拉”等先进巡航导弹的技术。为此,惶恐无措的台湾军方急急忙忙地用F-16战斗机发射了一枚”鱼叉”反舰导弹为自己壮胆,但这样的举动只能是贻笑大方。

  在”和平使命”-2005中俄联合军事演习中,我空军从一架轰-6战略轰炸机上发射了一枚国产新型巡航导弹,导弹准确地击中了60千米外的”敌”指挥所,该型导弹的头部有光学窗口,但载机并非临空发射,而是远在任何光学设备探测距离之外发射的,因此相信该弹采用了”红外/电视制导+数据链传输”的制导模式,即导弹头部的光学寻的头将观测到的情况通过数据链传输给载机上的人员,因此载机可以在较远的距离外”遥控”导弹飞向目标,这种制导模式也被称为”人在回路中”。从外形上看,该型导弹与”鹰击”-6系列飞航式导弹之间存在着某种渊源,但弹体和弹翼都有所变化,这种改变虽然可能会影响导弹的空中机动性能,但有利于远距离飞行,可以有效提高导弹的射程。

  在历次珠海航展上,参展的国产”飞豹”战斗轰炸机模型,都会带上一些令人耳目一新的导弹。2000年珠海航展上的”飞豹”战斗轰炸机全比例模型就挂载着一种有着类似飞机两侧的进气口的导弹,关于这种导弹的具体情况不得而知,但该弹与法国ASMP空射巡航导弹十分相像。ASMP空射巡航导弹是法国”三位一体”核打击力量的重要组成部分,射程300千米,可以携带15万吨TNT当量的核弹头,由法国空军的”幻影”-2000N和法国海军航空兵的”超级军旗”战斗机发射。在本次珠海航展上的”出口型飞豹”模型上,我们又看到一种具有隐身外型,与英国”风暴阴影”、德国”金牛座”颇为类似的防区外制导武器,可能是巡航导弹,也可能是防区外撒布器,曾有记者在采访中国空空导弹研究院时获悉”我们已经拥有自行研制的防区外撒布器”,而且既然伊朗都开发出了KITE-2000防区外撒布器,我们也完全有理由能做到。

  在最新服役的国产大型导弹驱逐舰上,我们不仅看到了被誉为”中华神盾”的国产大型相控阵雷达和垂直发射的远程舰对空导弹,还看到了一种过去未曾见过的圆桶形发射箱,这种发射箱的体积比我海军舰艇上普遍使用的”鹰击”-8系列反舰导弹大了近一倍。人们曾经猜测这是一种大型超音速反舰导弹,但目前越来越多的资料显示这是一款具备对地攻击能力的大型飞航式导弹,新华社的报道称最新服役的国产大型导弹驱逐舰”具有远程对空、对海和超视距对地打击能力”,从某种程度上也印证了这一推断。

  在本次珠海航展上,射程达到300千米,具有对地攻击能力的C-602飞航式导弹和用于打击地面目标的C-802改进型空对地导弹首次在国内的展览中亮相,我们有理由相信,这只是国产巡航导弹家族的冰山一角,日渐成熟的中国巡航导弹,正成为维护我国国家主权和领土完整、捍卫国家利益和尊严的倚天利剑!

  动能拦截弹是一种由助推火箭和作为弹头的动能杀伤飞行器(KKV)组成,借助KKV高速飞行时所具有的巨大动能,通过直接碰撞摧毁目标的武器系统。20世纪80年代实施“战略防御计划”(SDI)以来,美国为导弹防御系统研制了多种KKV,其中包括地基中段防御系统的地基拦截弹(GBI)、“宙斯盾”导弹防御系统的“标准”3(SM-3)海基拦截弹、末段高空区域防御系统(THAAD)拦截弹、“爱国者”3(PAC-3)拦截弹以及最新研制的可机动部署的动能拦截弹(KEI)。目前,GBI、SM-3、PAC-3和THAAD拦截弹等都已进入部署阶段。

  一、地基拦截弹

  地基拦截弹(GBI)是地基中段防御(GMD)系统的“武器”部分,是一种先进的动能杀伤防御武器,其任务是在地球大气层外拦截来袭的弹道导弹弹头并利用“直接碰撞”技术将其摧毁,即在大气层外(100km以上的高度)拦截来袭导弹。在GBI飞行过程中,作战管理指控系统通过飞行中拦截弹通信系统向其发送信息,修正来袭弹道导弹的方位信息,使得GBI弹上探测器系统能够识别指定的目标并进行寻的。

  GBI有两种型号,一种是部署在美国本土的三级动能拦截弹,另一种是计划部署在欧洲的两级动能拦截弹。

  1 美国本土部署的三级GBI

  美国本土部署的GBI包括一个外大气层杀伤飞行器(EKV,以碰撞方式摧毁弹头)、三级固体助推火箭以及发射拦截弹所需的地面指挥和发射设备。波音北美公司和休斯公司(现已并入雷神公司)设计的EKV分别于1997年和1998年进行了试验。1998年11月,选中雷神公司的EKV。但波音北美公司继续研制EKV,作为主要的备选方案。EKV本身是一个能够自主作战的高速飞行器,由红外导引头、制导装置、姿轨控推进系统和通信设备等组成。雷神公司的EKV重64kg,长约14m,直径06m。它采用惯性测量装置制导,依靠激光起爆系统执行各种指令,如在拦截弹助推段打开阀门和点燃点火器等。其导引头采用了一种三镜面不散光望远镜系统,将成像聚集到一个由两个波束分离器和三个256×256焦面阵组成的光学试验台组件上。为了保证冗余度,每个焦面阵都有各自独立的电子器件和信号处理信道,但三个信道的数据都将汇集到一个数据处理器中。据称,当光进入第一个波束分离器后,部分能量被反射到一个硅CCD焦面阵上,部分光则通过该分离器。在通过第二个波束分离器时,部分能量被反射到碲镉汞焦面阵。剩余的光继续前行,最后撞在第二个碲镉汞焦面阵上。这样,光通过每个光反射部件其波段依次变短,物体被三种不同的探测器成像,而且每个探测器是在同一时间看同一物体,只是带宽不同而已。采用这种方案有很多优点:第一,消除了在不同时间由不同波段对一个物体成像所带来的问题;第二,采用三个单独的焦面阵,如果一个或两个焦面阵出现故障,仍能继续执行任务;第三,这种系统的光学部分无需致冷,碲镉汞焦面阵的工作温度约为70K。

  关于助推火箭,美国导弹防御局(MDA)曾考虑多种方案,其中有研制新的助推火箭和改进现有“民兵”导弹的助推火箭等。1998年8月,当时的弹道导弹防御局(BMDO)决定以商用助推火箭为GBI的助推火箭(BV)方案。其一级发动机采用阿联特公司的GEM-40VN固体发动机(最初用于德尔它2火箭),二级和三级发动机采用考顿公司的Orbus 1A发动机。但该计划进展并不顺利,到2001年8月进行飞行试验时,已经比原进度落后了18个月。MDA最终调整采购战略,决定由轨道科学公司研制新的助推火箭(命名为OSC Lite),而洛马公司接手波音公司的商用助推火箭(重新命名为BV+)的工作。轨道科学公司的助推火箭为三级火箭系统,它的很多部件来自该公司的“飞马座”、“金牛座”和“人牛怪”火箭。

  目前,轨道科学公司已经成功进行了两次助推火箭飞行试验。2003年2月7日,成功完成了首次飞行试验。该助推火箭从加利福尼亚州范登堡空军基地发射,飞行高度达到了1800km,飞行距离达到距发射场5600km。根据飞行试验后对所采集数据的初步分析,助推火箭的所有主要目标均已实现,包括检验拦截弹的设计和飞行特性、通过机载设备采集飞行数据、确认推进系统预期达到的性能指标。2003年8月16日,轨道科学公司圆满完成第二次助推火箭发射,其试验目的包括检验火箭的设计和飞行特性;确认制导、控制和推进系统的性能。

  而洛马公司的助推火箭首飞试验推迟到了2004年1月。该公司研制的助推火箭一直受技术问题和工业事故所困扰,远远落后于轨道科学公司助推火箭的发展。但按照目前的战略,MDA支持上述两家公司研制助推火箭,从而降低导弹防御计划的风险。

  因此,从2004年以来进行的GMD系统飞行试验以及所部署的地基拦截弹采用的均是轨道科学公司研制的助推器,而之前飞行试验采用的只是一种代用的两级助推火箭。截至2008年,美国已经部署了24枚动能拦截弹,其中21枚部署在阿拉斯加,3枚部署在加利福尼亚州的比尔空军基地。预计到2013年左右,在美国本土部署的GBI将达到44枚左右。

  2 计划在欧洲部署的两级GBI

  美国目前已经决定在欧洲部署导弹防御设施,包括在波兰建立拦截弹阵地,2011~2013年间部署10枚远程地基拦截弹;将现在太平洋试验靶场使用的地基X波段雷达样机(GBR-P)改进后部署在捷克。

  在欧洲部署的GBI与美国本土部署的GBI基本相同,也是由助推火箭和EKV组成;但不同的是美国本土部署的GBI采用三级助推火箭,而欧洲部署的GBI采用两级助推火箭。两级GBI的最大速度略低于三级GBI,约7km/s,拦截高度200km。MDA称这种拦截弹更适于在欧洲的交战距离和时间要求。该拦截弹地下发射井的直径和长度比“民兵”3导弹等进攻型导弹所用的地下发射井小得多。

  二、“标准”3海基拦截弹

  “标准”3(SM-3)导弹是“宙斯盾”海基导弹防御系统采用的拦截弹。该弹包括SM-3 Block 0基本型、SM-3 Block 1型系列(1型、1A型、1B型)和Block 2型系列(2型和2A型)。目前,美国已经部署了少量的SM-3 Block 1型拦截弹,正在研制Block 1B型以及Block 2型系列。

  1 SM-3 Block 1型系列

  SM-3 Block 1型系列导弹(直径约035m)的关机速度在3~35km/s之间,具备拦截近程和中程弹道导弹的能力。

  SM-3 Block 1型导弹是以大气层内防御使用的两级SM-2 Block 4A导弹为基础,改进成四级大气层外使用的拦截导弹。SM-3导弹第一级、第二级采用了SM-2 Block 4A型导弹的发动机(MK-72助推器和MK-104双推力火箭发动机),增加了第三级火箭发动机、一个新的头锥和外大气层轻型射弹(LEAP)动能弹头。第三级火箭发动机(TSRM)的设计是以美国空军菲利普斯实验室“先进固体轴向级”(ASAS)计划所开发的技术为基础。为了提高能量管理的灵活性,TSRM现包括两个独立的推进剂药柱,按照指令两次点火。两次脉冲工作能独立地按照指令点火,以获得最大的时间上的灵活性。第一个脉冲为第三级提供变轨机动,而第二个脉冲能用于修正相对位置误差,这种误差在中段飞行期间有可能增大。对于较短交战距离来说,可能不需要第二个脉冲。第一个脉冲发动机熄火参数和第二个脉冲发动机点火参数由大气层外中段导引算法计算产生。

  TSRM的前面是一个改进的制导设备段(GS)。把制导设备段放在第三级上,可为动能弹头提供更大的空间,主要作用包括:(1)用于远程飞行的电力设备;(2)“宙斯盾”武器系统的通信;(3)遥测;(4)飞行终止电子设备;(5)GPS辅助的惯性导航(GAINS)。GAINS用于在拦截弹中段飞行期间提供较高的制导精度。GPS的信息与雷达的修正数据相结合,可以为拦截弹提供更高的状态精度。为了确保高拦截成功率,SM-3导弹即使在没有GPS数据的情况下也能作战使用。

  拦截弹的第四级是LEAP动能弹头。动能弹头本身能自动调节方向和高度,作大机动飞行。LEAP动能弹头高度模块化,结构紧凑,已经进行了空间试验,用于防御中远程弹道导弹。为了提高动能弹头的系统性能、部署能力及费效比等,LEAP必须控制在10kg量级,一般在6~18kg之间,带有弹射机构的LEAP为167kg,长约056m,直径0254m。LEAP动能弹头主要由导引头、制导设备、固体轨姿控系统(SDACS)以及接口弹射器机构等四部分组成。SDACS包括一个主发动机和两个脉冲发动机。在2003年6月进行的FM-5飞行试验中,SDACS系统主发动机工作(即在持续燃烧模式下)使弹头过热,因此其它两个脉冲(脉冲1和脉冲2)使转向球出现裂纹。为此,2004年部署的首批5枚SM-3 Block 1型导弹只具备持续燃烧的功能,禁用了两次脉冲燃烧。目前正在对SDACS系统进行改进。

  SM-3 Block 1型导弹的动能弹头采用单色长波红外导引头和固体SDACS推进系统,具备目标识别能力,在海基导弹防御系统飞行试验中成功地完成了拦截靶弹的任务。

  SM-3 Block 1A型导弹与Block 1型导弹的区别不大,只是在Block 1型导弹的基础上改进了某些部件。Block 1A型导弹仍然采用单色导引头,其动能弹头采用了全反射光学系统和先进的信号处理器。

  目前雷神公司还在开发SM-3 Block 1B。该型导弹包括先进的双色红外导引头、先进的信号处理器和一套节流轨姿控系统(TDACS)。TDACS能够动态调整弹体的推力和运转时间,而且很可能会提供更大的推力,使系统应对不同威胁的能力更强。

  2 SM-3 Block 2型系列

  美国还正在与日本共同研制SM-3 Block 2型和Block 2A型导弹(直径约为053m),关机速度将比Block 1型系列导弹提高45%~60%,达到5~55km/s左右,具备拦截洲际弹道导弹的能力。美日的研制工作由美国的雷神公司和日本的三菱重工公司共同承担。日本主要参与导引头、轨姿控系统(DACS)、第二级火箭发动机和蚌壳式头锥的研制。Block 2型的主要改进如下:

  ● 第二级将采用直径53cm的火箭发动机;

  ● 动能弹头采用双色导引头,对突防装置具有更强的识别能力;

  ● 改进动能弹头信号处理器,视场内识别的弹头数量增加;

  ● DACS可能采用延长固体燃料燃烧时间或增加DACS长度的液体DACS或液体/固体燃料混合系统;

  ● 新型蚌壳式头锥。

  SM-3 Block 2A型导弹则是在Block 2型导弹的基础上,采用了比Block 2型更大的动能弹头,提高动能弹头的轨控能力。MDA计划2009年进行Block 2型拦截弹火箭发动机试验,2013年左右部署Block 2型导弹,2015年部署Block 2A型导弹。

  三、THAAD拦截弹

  THAAD是一种高速动能杀伤拦截导弹,由固体火箭推进系统、KKV和连接这两部分的级间段等部分组成。THAAD全弹长617m,最大弹径037m,弹重660kg。

  KKV主要由捕获和跟踪目标的中波红外导引头、制导电子设备(包括电子计算机和采用激光陀螺的惯性测量装置)以及用于机动飞行的轨姿控推进系统组成。整个拦截器(包括保护罩)长2325m,底部直径为037m,重量为40~60kg。

  KKV装在一个双锥体结构内:前锥体为不锈钢制造,其上有一个矩形的非冷却蓝宝石板,作为导引头观测目标的窗口;后锥体用复合材料制造。为了保护导引头及其窗口,在前锥体的前面还有一个保护罩,由两块蚌壳式的保护板组成,在导引头即将捕获目标之前抛掉。在大气层内飞行期间,保护罩遮盖在头锥上,以减小气动阻力和保护导引头窗口不受气动加热。

  导引头的设计包括一个全反射Korsch光学系统和凝视焦平面阵列。THAAD拦截弹在前7次飞行试验中,其红外导引头采用硅化铂焦平面阵列,阵列规模据信为256×256元。从第8次试验起,THAAD拦截弹的红外导引头改为碲化铟焦平面阵列,很可能是多色的焦平面阵列。

  KKV的变轨与姿控系统提供姿态、滚动和稳定控制,也提供最后拦截交战的变轨能力。轨控和姿控系统包括单独的氧化剂箱、推进剂箱、增压剂箱和轨控与姿控发动机。轨控系统由4台发动机组成,姿控系统由6台较小的发动机组成(4台俯仰与滚动控制发动机,2台偏航控制发动机)。

  用于制导的集成电子设备组件包括几台简化指令的计算机,用以改进直接碰撞杀伤制导;而采用环形激光陀螺的惯性测量装置用于测量和稳定平台的运动,并作为寻的头的测量基准。

  THAAD拦截弹发射前由拦截弹装运箱提供保护。该装运箱用石墨环氧树脂材料制造,以使重量最小。装运箱采用气密式密封,在拦截弹储存或运输时提供保护。装运箱也起发射筒的作用,被紧固在有10枚拦截弹的托盘上。该拦截弹的托盘再安装在发射车上。拦截弹直接从装运箱中发射出去。

  2007年1月,洛马公司被授予生产THAAD的合同,包括48枚拦截弹、6辆发射车和2个火力控制与通信单元,2008年部署了首批24枚拦截弹。美国陆军计划最终将采购1400多枚THAAD拦截弹。

  四、可机动部署的动能拦截弹

  GBI、SM-3、THAAD和PAC-3拦截弹等都属于动能拦截弹。但这些拦截弹都是单一用途的,只能用于各自的武器平台系统。这些拦截弹的助推器多数是由原有导弹武器系统的助推器改进而成,如SM-3和PAC-3的助推器都是分别由相同名称的舰空导弹和地空导弹的助推器改进而成,GBI助推器的早期方案也是采用“民兵”3导弹的助推器,后来调整为采用商业运载火箭的发动机。这些助推器的加速性能都不高,存在着两个主要缺陷:一是应用平台单一,二是性能受到限制。这些缺陷使拦截弹的效费比难以提高,在作战中也缺乏灵活性。

  因此,美国从2002年就已经开始考虑研制下一代可机动部署的多用途(用于助推段、上升段和中段拦截)动能拦截弹(KEI)。其目的是通过通用助推器与有效载荷的逐渐集成,利用可机动部署能力和战场空间的交战灵活性来逐步增强一体化导弹防御体系的多层次拦截能力和健壮性,并且达到较高的效费比。KEI要达到的这些能力是一体化弹道导弹防御系统(BMDS)采办策略中非常重要的目标。

  在KEI方案中将设计一种通用的集装箱式的高加速度拦截弹。KEI由机动发射车、拦截弹和作战管理系统组成。一个KEI连包括5辆机动发射车(每个发射车装备2枚拦截导弹)和6辆运载作战管理系统的高机动性多用途轮式车辆(每辆装载4个S波段天线的卡车)。利用7架C-17运输机可以在24h内将一个KEI连部署到世界任何地方,并且能在部署后3h内做好作战准备。

  KEI拦截弹长约118m,弹径102m,重1044t,体积约是SM-3的两倍。KEI的杀伤器由自动导引系统、SM-3导弹的电子系统以及为GBI研制的轨姿控系统等组成。KEI可在60s的时间内加速到6km/s,速度约是SM-3 Block 1型导弹的两倍。

  按照最初的计划,KEI旨在研制成一种新型可机动部署的助推段/上升段动能拦截弹,作为机载激光助推段拦截系统的后备方案。但是随着该计划的发展,MDA已将KEI助推器按通用助推器使用,与多用途杀伤飞行器和先进的具有目标识别能力的有效载荷(如子母拦截器MKV)进行集成,以增强GMD、“宙斯盾”、THAAD和PAC-3等的能力。

  KEI计划目前进展比较顺利,成功地进行了第一级和第二级发动机静态点火试验,初步验证了这两级发动机应用于高加速度、高速度以及高机动能力导弹方案的可行性。今后,还将陆续进行一系列发动机静态点火试验,利用获取的数据进一步优化设计,为2009年计划进行的首次助推器飞行试验做准备。

  KEI既可陆基部署,也可海基部署。预计,陆基KEI将于2014~2015年左右具备初始作战能力,海基KEI的部署时间尚未确定。

  五、PAC-3拦截弹

  PAC-3型导弹由一级固体助推火箭、制导设备、雷达寻的头、姿态控制与机动控制系统和杀伤增强器等组成。弹头与助推火箭在飞行中不分离,始终保持一个整体。PAC-3导弹的杀伤增强器增大了拦截目标的有效直径。该装置位于助推火箭与制导设备段之间,长127mm,重111kg。杀伤增强器上有24块0214kg重的破片,分两圈分布在弹体周围,形成以弹体为中心的两个破片圆环。当杀伤增强器内的主装药爆炸时,这些破片以低径向速度向外投放出去。

  六、新型动能拦截器——子母拦截器

  如何从“威胁云团”(由弹头、弹体和诱饵组成)中识别来袭弹头是目前中段防御系统面临的重大挑战之一。而GBI和SM-3导弹目前均是携带单个动能拦截器,在无法有效解决识别目标问题的情况下,拦截一枚具有复杂突防装置的导弹就可能需要多枚拦截弹。为此,MDA于2002年公布了微型杀伤拦截器(MKV)计划,即利用微型化技术,使一枚拦截弹携带数十个拦截器,采用一种“多对多”的策略来有效弥补弹头识别方面的不足,降低对来袭导弹发射前的情报需求和对导弹防御系统识别能力的需求。

  冷战时期,美苏1972年签订的《反导条约》严格限制研制子母杀伤器用于国家导弹防御中。但由于该条约存在一些漏洞,美国实际上已经很早就开始相关技术的研究。20世纪90年代中期,美国海军与当时的弹道导弹防御局合作,研制一种用于战区导弹防御系统的微型拦截器——LEAP。2002年6月,美国退出《反导条约》后,MKV计划正式对外公布。2004年,洛马公司获得研制和验证微型杀伤器的合同,为期8年,要求拦截器和母舱适用于现有的以及计划发展的各种助推火箭。同时,微型拦截器计划正式更名为子母拦截器(MKV)。

  MKV体积小,重量轻,对运载工具的要求较低。新MKV概念是针对GMD目标识别问题提出来的,未来可用于GBI、SM-3和KEI上。MKV计划引进了一种双色导引头和改进的液体轨姿控系统。MDA曾估计单个拦截器的重量在2~10kg之间。现在预计每个拦截器大约重5kg,直径15~20cm,长25cm,大小如咖啡罐。具体携带的拦截器数量是保密的,如果使用GBI携带的话,拦截器应在10个以上。MDA和洛马公司的官员一直暗示,一枚拦截弹将可以携带24个拦截器或者更多。但是如果现在的估计是准确的(即每个拦截器为5kg),现有的或者计划研制的助推火箭能够携带的拦截器数量似乎将大大少于24个。而且,由于拦截器必须有足够的质量,以便采用“碰撞杀伤”的方式进行拦截,因此不能无限制地减小拦截器的尺寸。

  MKV的具体方案如下:拦截弹发射后,在导弹防御系统探测器(包括海基X波段雷达以及天基跟踪与监视系统)的引导下飞向目标。母舱与助推火箭分离后,利用自身配置的目标识别装置探测目标,为拦截器分配打击目标的任务,释放拦截器。母舱上的远程红外探测器探测、跟踪及识别弹头和诱饵。每个拦截器都会从母舱接收到瞄准信息。对于每一个已识别的弹头可能需要分配几个拦截器进行拦截。每个拦截器也都在自身的光学探测器(工作在可见光和红外波段)制导下,飞向“威胁云团”,将所有可能的目标全部摧毁。即便与母舱分离,拦截器仍将能实时接收到母舱提供的目标修正信息。

  目前MKV计划的重点是研制所需的微型化硬件。拦截器微型化技术面临严重的挑战,如何消除拦截器封装组件产生的热量也是亟待解决的难题。

  2005年完成了拦截器导引头关键设计评审、导引头软件产品设计评审、成像稳定性试验、导引头软件关键设计评审以及制造导引头部件的电路板。2006年3月,洛马公司完成了首个“探索者”导引头的研制,在硬件回路设施中进行试验,模拟杀伤器的振动工作环境。在复杂的光电试验中,验证了导引头和相关杀伤器电子设备的功能。2006年7月,洛马公司又进行了MKV拦截器轨姿控推进装置的初始试验,验证使用单组元液体推进剂的轨姿控系统用于MKV的可行性。试验表明,实际飞行重量的推进装置样机以及阀门组合等达到了规定的性能和寿命指标。

  MKV计划在完成硬件回路试验、杀伤器(KV)悬浮试验、KV飞行试验后,最终将于太平洋试验台上对母舱(CV)和KV等进行BMDS系统级飞行试验。预计2010~2011年间开始系统飞行试验。

  MKV的技术可能会带动助推段拦截技术的发展,甚至带动天基拦截技术的发展。但是,也有技术专家对MKV技术提出质疑。他们认为,MKV可能在对付诱饵方面比较有效,但对其它类型的突防措施却不能提供什么帮助,例如通过在弹头表面涂上颜色等简单的战术就会影响光学探测器的探测性能等。

巡航导弹是一种用动力推进,以机翼来产生升力的导弹,大多数的动力来源是喷射发动机。简单来说巡航导弹就是飞行炸弹。

它们可以携带传统弹头或核弹头,射程可达数百英里(1英里=160935公里)。近代的巡航导弹可以以超音速或亚音速飞行,具备自我导引能力,而且还能以非弹道型态的飞行路径来躲避雷达侦测。巡航导弹与无人驾驶飞机的不同之处,在于巡航导弹不担任侦察任务,弹头整合为系统的一部分,而且最后会在攻击中损失。

超音速导弹,明细:

4k80玄武岩(SS-N-12导弹)超音速巡航导弹(P-500,苏联/俄国)

SS-N-22日炙巡航导弹(苏联/俄国)

P-800缟玛瑙(P-800 Oniks出口型称为红宝石,苏联)

P-700花岗岩巡航导弹(P-700 Granit,苏联/俄国)

3M-54俱乐部/SS-N-27热天巡航导弹(3M-54 Klub,俄国)仅在终端节为超音速。

鹰击16巡航导弹(C-101,FL-2,YJ-16,中国)

海鹰3巡航导弹(C-301,HY-3,中国)

鹰击83巡航导弹(C-803,YJ-83,中国/巴基斯坦)仅在终端节为超音速。

鹰击85巡航导弹(C-805,中国)

KD-88(中国/巴基斯坦)

鹰击91巡航导弹(YJ-91,中国)

长剑-10导弹(中国)

布拉莫斯巡航导弹(BrahMos,印度/俄国)

雄风三型反舰导弹(台湾)

云峰巡航导弹(台湾)

亚音速巡航导弹,明细:

AGM-86导弹(美国)

战斧巡航导弹(美国/英国)

彩虹局Kh-55导弹(苏联)

东海-10(DH-10)导弹(中国)

HN-I(中国)

HN-II(中国)

HN-III(中国)

玄武III巡航导弹C(韩国)

巴卑尔2巡航导弹(巴基斯坦,发展中)

无畏巡航导弹(Nirbhay missile,印度,发展中)

海鹰2巡航导弹(HY-2 Haiying/KD-63,中国)

金牛座导弹(Taurus missile,德国/瑞典)

暴风影导弹(Storm Shadow/SCALP,英国/法国)

ASMP导弹(法国)核导弹,最初使用载机是幻影IV,射程300公里(大于蓝钢导弹240公里)[3]

巴卑尔巡航导弹(Babur missile,巴基斯坦)

雷神巡航导弹(Ra'ad ALCM,巴基斯坦)

玄武III巡航导弹A/B(Hyunmoo IIIA/B,韩国)

雄风二E巡航导弹(Hsiung Feng IIE,台湾)

UNSC战舰名字

(借鉴三体,光晕HALO,EVE,自己想象的内容)

UNSC 轻型战斗巡洋舰 : 真理与和谐号,秋风支墩号,仲夏之夜号,青铜时代号,春秋战国号,五月花号,黄金海岸号,好望角号,织田信长号,大和号,“秦”号,至上正义号

UNSC重型战斗巡洋舰: 皇家橡树号,万有引力号,自由女神号,世宗大王号,“明”号,拜占庭号,凯撒号

航母:“唐”号,布鲁塞尔号,圣三位一体号,和风号,独立号

UNSC驱逐舰: 十字军号,十月革命号,蓝色空间号,圣彼得堡号,天蝎号,莫洛托夫号,支士敦号,敦刻尔克号,不列颠号,“宋”号,谷神星号,天狼星号

UNSC炮艇

螳螂级鱼雷艇,胡蜂级导弹艇

UNSC著名战舰

“秋水”级驱逐舰(蓝色空间号)

装备一座常青藤氘聚变反应堆A5型号,装备三门88mm磁轨炮,两座格林近防炮,杀手锏是分布在战舰两侧的两座三联装的“金牛座”核鱼雷吊仓。

“深空”级护卫舰(末世之都号)

装备两门76mm磁轨炮,六门格林近防炮,和两座“神臂弩”反导系统导弹仓,引擎为常青藤氘聚变反应堆A3型号。

“和风”级轻型战斗巡洋舰(秦号)

装备两座常青藤氘核聚变A6型号,两门200mm和四门88mm磁轨炮,四门格林近防炮,两座分布在舰体两侧的双联装“金牛座”核鱼雷吊仓。

“雅典娜”级重型战斗巡洋舰(至上正义号)

装备两座A5和A6常青藤氘核聚变堆,六门200mm磁轨炮,八门格林近防炮,四座“神臂弩反导系统”

六组“猎户座”快速反舰导弹,两组“半人马”定点激光拦截炮,机库携带12架“金枪鱼”高速截击机。

“万王宝座级”攻击型重型航母

装备四座A8大型舰载核动力引擎,中心安装最新的A9型“肖川崎”断层跃迁核聚变反应堆。全舰长32公里装备十二座格林近防炮和八座“神臂弩”反导系统,九组“彼岸花”超远程弹道导弹,和五组半人马定点激光拦截炮。全舰六个大型舰载机库。

可搭载36架“金枪鱼”高速截击机,16架“彩虹糖”高速鱼雷机,和24架“海狸”武装登陆艇。额外可搭载54个“冰雹”式近地轨道伞兵专用登陆器。

异端”级重型战略货舰(珠穆朗玛号)

可搭载十万吨货物,比如矿石,陆战武器,陆战队员。引擎型号以A6,A8等大型核反应堆为主,因为没有自卫武器,该型舰船可提高成本换装A9“肖川崎”断层跃迁引擎用作保命的东西。

“宝石路”级标准工业采矿舰(黑珍珠号)

发展经济主要来源标准舰船,引擎为A6反应堆,

全舰没有自卫武器,装备16个“马铃薯探针”式激光采矿器,“宝石路Ⅱ”型号增加民用机库,可搭载10架“先行者”采矿无人机。

外星科技:一亿吨级TNT恒星级核弹,反物质泯灭动力引擎,“魅影”式等离子穿刺炮,“圣堂防卫者”大口径定点拦截炮,“圣甲虫”超重型陆地战车。

人类未来尖端科技:A10“肖川崎Ⅱ”曲率光速引擎,空间站防御系统:MAC炮,超大口径电磁轨道炮,可在极远距离击穿敌人主力舰,对航母有极大威胁,通常被UNSC部署在近地轨道的各个空间站,小型化成功后甚至可以部署在驱逐舰上,其具有威力。

欢迎分享,转载请注明来源:表白网

原文地址:https://h5.hunlipic.com/xing/1235279.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-09-20
下一篇2023-09-20

发表评论

登录后才能评论

评论列表(0条)

    保存