可以,不过巡航导弹很少安在战斗机上,巡航导弹的体积、重量都很大,如果在机翼下挂置,会影响机动性和速度。例如:F-14如果在机翼下挂置4枚“不死鸟”空空导弹,没有发射,也必须扔掉2枚才能降落。重型战斗机挂空空导弹都这样。如果没有制空权,挂巡航导弹就是送死。但你还是输了。
5楼的,B-52是重型轰炸机,载弹量12吨,不能比。弹道导弹不能安装在战斗机上。
钻地弹
来源: 作者: 发布时间:2007-08-10
据估计,目前世界上约有10000余处隐藏在地下的军事设施,其中1000余处是具有战略意义的洲际弹道导弹发射井、指挥与控制中心、生化武器生产与存储设施等。能够有效对付这些地下目标的武器自然非钻地弹莫属。
钻地弹通常外形细长,弹体采用高强度特种钢或重金属合金材料,内装钝感炸药和时间延迟引信,因此能够利用动能侵彻到地下一定深度后引爆。早期的钻地弹主要用于破坏机场跑道,对命中精度的要求不高,但后来其应用逐渐转向对付地堡、地道、洞穴等点目标,所以加装制导组件就势在必行。
美国
美国空军目前装备的制式钻地弹是900千克级的BLU-109系列、450千克级的BLU-110系列和225千克级的BLU-111系列。使用最频繁的是洛马公门生产的BLU-109/B,其重量为874千克,内装240千克炸药,弹体由高强度钢制成,可以穿透24米厚的混凝土。
美国最广为人知的钻地弹是有“掩体粉碎机”之称的 CBU-28 ,其重量达到2130千克,长584米,直径370毫米,内装306千克的特里托纳尔炸药,可以穿透6米厚的混凝土或30米厚的土层。这种重型钻地弹是在海湾战争期间紧急研制的。当时研究人员利用多余的203毫米炮管制成 BLU-113A / B钻地弹,然后安装“宝石路”III制导组件形成GBU-28。 1991年2月27日,一架F-111战斗机首次投放了2枚GBU-28 ,用于攻击巴格达以北数千米的一处地下掩体设施。从事后公开的电视录像看,炸弹击中目标后大约6秒,从弹着点冒出大量浓烟。在此后的科索沃战争和阿富汗战争中,GBU-28 都曾粉墨登场,在攻击南联盟的地下掩体和塔利班武装的洞穴综合设施方面发挥了重要作用。但这种重型钻地弹的主要缺点是体积过大,自F-111战斗机退役后.美空军目前只有F-15E 战斗机能挂载 GBU-28。
海湾战争后,美国空军又研制了代号BLU-116/B 的所谓“先进单一钻地弹”(AUP),其重量仅为874千克,但侵彻能力与GBU-28相比毫不逊色,同样可以穿透6米厚的混凝土或30米厚的土层,这也许要归功于其弹体直径较小,而且采用高强度的镍钴合金钢,内装先进的PBXN-109 高能炸药。BLU-116/B与BLU-109具有相同的外形尺寸和气动力性能,而且制导组件的连接点也相同,因此也可以配用“宝石路”、“杰达姆”等制导组件。
进入21世纪后,美国空军对钻地弹的兴趣有增无减,陆续开展了多项研究工作,其中值得关注的是GBU-39/B “小直径炸弹”(SDB)、“巨型钻地弹”(MOP)和“高速钻地弹”(HSP)。
顾名思义,“小直径炸弹”是一种轻小型的钻地弹,长约1 8米,直径019米,重仅130千克,内装23千克高能炸药,可供F-16、F-22、F-35 等战斗机甚至无人战斗机内部装载,从而解决了重型钻地弹只能由轰炸机和重型战斗机挂载,而且挂载数量十分有限的缺陷。有人怀疑,这样一种小型钻地弹是否具有实用的侵彻能力。美国空军研究认为,通过采用先进的弹体材料、细长的外形设计和精确的制导系统,加上以近乎垂直的角度撞击目标表面,“小直径炸弹”可以穿透1 83米的混凝土。此外,“小直径炸弹”将采用抗干扰的CPS / INS制导装置、栅格状尾翼、几何形状可变的弹翼组件,最大射程可达110千米,命中精度5-8米。到2004年底,波音公司已经对“小直径炸弹”成功进行了13次空中投放试验。美国空军已经确定采购24000枚,预定 2006年开始投入装备。
与“小直径炸弹”相反,“巨型钻地弹”是向尽可能重的方向发展。美国空军2004年提出“巨型钻地弹”概念,并透露是受到号称“炸弹之母”的“巨型空爆炸弹”的启发。按设想,“巨型钻地弹”将采用GPS制导,并利用较大的控制翼实现稳定飞行。它的重量惊人,为13500千克,比“炸弹之母”还要重近4000 千克。其弹体更厚,以便承受侵彻目标时的巨大冲击力,而外形尺寸较小,以便能由B-2A轰炸机装载。它的投放高度将达到12 000 米,而“炸弹之母”约为6000 米。攻击角度接近垂直,以便增大侵彻深度。目前,美国空军研究实验室正在为“巨型钻地弹”研究弹体材料,并强调要控制其成本,以便空军未来能大量采购。
“高速钻地弹”主要通过高的弹着速度来提高侵彻能力,其弹着速度按设想将达到1200米/秒,是现有普通钻地弹的4倍。试验表明,重35千克、弹着速度为450米/秒的钻地弹,可以穿透1米厚的钢筋混凝土结构。以此大致推算,设计重量在227~454千克之间的“高速钻地弹”无疑具有前所未有的侵彻能力。按照美国空军研究实验室2003 年9月授予的合同,通用动力公司目前正对“高速钻地弹”进行为期4年的前期研究。
需要指出的是,即便是目前最重或最快的常规钻地弹,其侵彻能力也非常有限,特别是对于极其坚硬的花岗岩层,据估计最大侵彻深度在15米左右。如果想彻底摧毁深埋在花岗岩层下数百米的军事设施,只有一个办法——动用核钻地弹。但使用核钻地弹不但会造成核污染,而且容易引来国际舆论的批评。2003年,美国防部出于未来打击朝鲜地下核设施的考虑,曾提出在B61-11的基础上研究能“钻”得更深的所谓“强力核钻地弹”( RNEP ),但后来终因国内和国外的广泛质疑而遭美国国会否决。
B61-11是美国1997年装备的第-批低当量核钻地弹。它长36 米,重量约 550千克,可以穿透61米的岩石和土壤混合地表。相比之下,“强力核钻地弹”重量达到2300千克,并将进一步增加弹体硬度,能穿透更深的土层、钢筋混凝生和花岗岩层,摧毁地下几十米甚至是上百米的军事设施。
欧洲
MBDA公司的“精确制导弹药”(PGM)系列钻地弹包括225千克级和900千克级两种基本型号,目前已经出口阿联酋,装备其空军的“幻影” 2000-9战斗机,未来还有可能装备阿联酋新近购买的80架F-16 Block60战斗机。它们均可采用半主动激光、电视或红外制导,其中电视或红外制导提供的命中精度均为10米以内。900千克级型号虽然较重,但采用两级火箭发动机,因此在飞行性能上与225千克级型号基本相同,二者高空投放时,射程均为50千米、 MBDA公司正打算为这两种钻地弹配备动力更为强劲的火箭发动机并引入GPS制导方式,以进一步增大射程,同时将命中精度提高到1米左右。
德国和瑞典正在研制的KEPD350“金牛座”加装有GPS /惯性导航系统、地形识别导航系统、红外寻的器,其“墨菲斯托”(Mephisto,歌德《浮士德》中的恶魔)弹头可以穿透坚固的目标。最大射程为350千米,最大巡航速度为083 马赫。它可以装备“狂风”、F / A-18、“鹰狮”、F-16、F-111战斗机,还有P-3C反潜机等,可以对高价值、硬式、固定、半固定目标进行打击。由于具有防区外打击能力,因此,空军作战人员可以在敌人的防空区外对敌人重点守卫目标实施打击。
俄罗斯
从公开资料看,俄罗斯目前主要有两种制导钻地弹,即配备钻地战斗部的KAB-500Kr和KAB-1500Kr 。它们均采用电视制导,命中精度4-7米。KAB-50OKr 可配备重 380千克的钻地战斗部,在发射前锁定目标,飞行途中自动飞向目标,所以飞机投弹后即可离开发射区域。KAB-1500 可供苏-30在高速飞行中从高空投放.配用1100千克的钻地战斗部,能够穿透 20 米的土层或2米厚的混凝土。
巡航导弹是一种用动力推进,以机翼来产生升力的导弹,大多数的动力来源是喷射发动机。简单来说巡航导弹就是飞行炸弹。
它们可以携带传统弹头或核弹头,射程可达数百英里(1英里=160935公里)。近代的巡航导弹可以以超音速或亚音速飞行,具备自我导引能力,而且还能以非弹道型态的飞行路径来躲避雷达侦测。巡航导弹与无人驾驶飞机的不同之处,在于巡航导弹不担任侦察任务,弹头整合为系统的一部分,而且最后会在攻击中损失。
超音速导弹,明细:
4k80玄武岩(SS-N-12导弹)超音速巡航导弹(P-500,苏联/俄国)
SS-N-22日炙巡航导弹(苏联/俄国)
P-800缟玛瑙(P-800 Oniks出口型称为红宝石,苏联)
P-700花岗岩巡航导弹(P-700 Granit,苏联/俄国)
3M-54俱乐部/SS-N-27热天巡航导弹(3M-54 Klub,俄国)仅在终端节为超音速。
鹰击16巡航导弹(C-101,FL-2,YJ-16,中国)
海鹰3巡航导弹(C-301,HY-3,中国)
鹰击83巡航导弹(C-803,YJ-83,中国/巴基斯坦)仅在终端节为超音速。
鹰击85巡航导弹(C-805,中国)
KD-88(中国/巴基斯坦)
鹰击91巡航导弹(YJ-91,中国)
长剑-10导弹(中国)
布拉莫斯巡航导弹(BrahMos,印度/俄国)
雄风三型反舰导弹(台湾)
云峰巡航导弹(台湾)
亚音速巡航导弹,明细:
AGM-86导弹(美国)
战斧巡航导弹(美国/英国)
彩虹局Kh-55导弹(苏联)
东海-10(DH-10)导弹(中国)
HN-I(中国)
HN-II(中国)
HN-III(中国)
玄武III巡航导弹C(韩国)
巴卑尔2巡航导弹(巴基斯坦,发展中)
无畏巡航导弹(Nirbhay missile,印度,发展中)
海鹰2巡航导弹(HY-2 Haiying/KD-63,中国)
金牛座导弹(Taurus missile,德国/瑞典)
暴风影导弹(Storm Shadow/SCALP,英国/法国)
ASMP导弹(法国)核导弹,最初使用载机是幻影IV,射程300公里(大于蓝钢导弹240公里)[3]
巴卑尔巡航导弹(Babur missile,巴基斯坦)
雷神巡航导弹(Ra'ad ALCM,巴基斯坦)
玄武III巡航导弹A/B(Hyunmoo IIIA/B,韩国)
雄风二E巡航导弹(Hsiung Feng IIE,台湾)
EF-2000虽然隐身和超音速巡航等性能比不上F-22,但据称,它只用了F-22一半的成本具有F-22的90%空战能力以及远超过F-22的对地攻击能力。
欧洲“台风”(Eurofighter Typhoon)战斗机由德国、英国、意大利和西班牙四个国家共同研制,是采用前置鸭式三角翼、双发、单垂尾、机腹进气道布局,具有超视距、空中超机动攻击能力和格斗能力的多用途空中优势战斗机,还具有短距起降(STOL)能力、“超音速巡航”能力和一定的对地攻击能力,不使用加力燃烧室就能在音速之上持续飞行。
1、 设计
欧洲“台风”战斗机广泛采用碳素纤维复合材料、玻璃纤维增强塑料、铝锂合金、钛合金和铝合金等材料制造,复合材料占全机比例约40%。采用一些隐形技术,包括低雷达横截面和被动传感器。前置鸭式三角翼构造空气动力学不稳定设计提供高度的敏捷性(特别在超音速)、低空气阻力和可提高升力,机翼使用无缝隙襟翼。飞行员通过每秒自动控制40次的飞行控制计算机和全权4余度主动控制数字式电传系统控制飞机去提供好的飞行控制特性。在不使用矢量发动机的情况下就具有优异的超机动性能,得益于良好的机身设计,不但维持高速优异操纵性、也具有很好的缠斗能力,特别是高速高过载缠斗。为增加航程,还具有空中加油能力。
2、 驾驶座舱
飞行员控制系统具有特色的是采用语音控制操纵杆系统(VTAS),直接的声音输入允许飞行员使用声音命令实现模态选择和数据登录程序,这也是世界上第一种语音操控系统,覆盖传感器、武器控制、防卫帮助管理和飞行中的操纵,提供24个原来需要指尖控制的指令。飞行员配备英国宇航公司(BAE)“打击者”(Striker)头盔安装显示系统 (HMS)。平视显示器显示飞行参考数据、武器瞄准、插入字幕提示和前视红外(FLIR)影像。驾驶间有三个多功能彩色下视显示器(MHDD),显示战术情形、系统状况和地图。一个由英国宇航公司(BAE)与罗克韦尔·柯林斯数据链方案LLC公司(DLS)组成的国际合作EuroMIDS集团公司,提供Link 16军用数据链多功能信息分发系统(MIDS)小体积终端用于数据的安全传递。另外,还安装英国宇航公司(BAE)TERPROM地面接近警告系统。
3、动力装置
欧洲“台风”战斗机安装2台欧洲发动机公司(Eurojet)EJ200 双轴涡扇发动机(加力燃烧室),推重比9。最大的静推力2 x 60千牛顿 (13,490磅),加力推力2 x 90千牛顿 (20,250磅) 。采用数字控制和综合最佳状态监视系统,单晶涡扇叶片,一个收敛/扩散排气喷嘴。1998年开始设计矢量喷嘴,除了增加机动能力,主要用于能够更短距离起飞来实现上舰操作,目前EJ-200还在进行推力提升改进。
4、电子对抗系统
欧洲“台风”战斗机装备先进的“频谱防御辅助子系统”(DASS),安装在机体结构内和航空电子系统整合。该系统由英国宇航公司(BAE)系统航空电子设备公司、西班牙的英迪拉(Indra)系统公司和意大利的Elettronica公司共同组成的EuroDASS公司合作发展,欧洲航宇防务(EADS)在2001年10月加入。“频谱防御辅助子系统”对单一或复合的威胁提供完全自动的响应并进行威胁优先次序评定。“频谱防御辅助子系统”包括一个电子对策/支援措施系统(ECM/ESM),前面和后面的导弹接近告警系统,可超音速时使用的拖曳诱骗系统,激光告警接收机和SaabTech 电子技术公司BOL箔条和曳光弹撒布系统。航空电子系统基于北约组织标准数据链,采用光导纤维信息通路。
5、传感器
欧洲“台风”战斗机安装一套CAPTOR ECR 90多模式X-波段脉冲多普勒雷达,是由欧洲雷达公司(Euroradar)合作发展,最大探测距离约150公里,据称是目前扫描最快的机载机械扫描雷达,具有极高的数据更新率。ECR 90多模式雷达有三个处理信道,第三个信道作为干扰机分级、干涉消隐和旁瓣无效。欧洲雷达公司(Euroradar)由英国宇航公司(BAE)、西班牙的英迪拉(Indra)系统公司、意大利FIAR公司和欧洲航宇防务(EADS)德国分部合作组成。EUROFIRST公司被动红外机载跟踪装置(PIRATE)安装在机身左舷风挡玻璃前面。EUROFIRST公司由意大利Galileo Avionica (FIAR) ,英国泰利斯光电子技术公司和西班牙Tecnobit公司合作组成。被动红外机载跟踪装置(PIRATE)能在3-5 和 8-11微米两种光谱带工作。当在空对空任务中使用,它如一个红外搜寻和跟踪系统 (IRST) 的职能,提供被动目标探测和跟踪;在空对地任务中,它履行多目标捕获和辨识,也提供导航和降落帮助功能,还提供一个易操纵的图像到头盔安装显示器上。
三、 欧洲“台风”战斗机的机载武器系统
欧洲“台风”战斗机机内安装一门27毫米毛瑟机炮,用于武器携带共有13个挂点,每个机翼下各有四个,进气道正下方一个,进气道两边角落各两个半埋式挂点(装备超视距空空导弹)。一套武器控制系统(ACS)管理武器选择、发射和监控武器状况。欧洲战斗机能使用广泛多样性空对空和空对地武器。
主要欧洲机载武器系统
欧洲“台风”战斗机为了同美、俄等其他国家机载武器系统抗衡,将采用大量由欧洲国家共同研制的先进机载武器。
MBDA公司、EADS CASA公司、INMIZE公司和萨伯动力公司共同研制的“流星”(Meteor)中程空对空导弹,采用冲压/火箭复合推进,计算机自动调节推力,使用中段指令修正、末段主动方式导引,最大射程超过100公里。欧洲导弹设计局(MBDA)ASRAAM是欧洲新一代近距格斗空对空导弹,据称在英国空军鉴定中,该导弹的截获与跟踪距离是AIM-9导弹的2倍,在绝大多数情况下都是首发命中目标,增强了飞机的作战能力;另一种是由德国博登湖机械技术公司(BGT)研制的“虹膜”(IRIS)-T(红外成像系统-尾翼推进矢量控制)先进近距空对空导弹,采用推进矢量控制技术,IRIS-T导弹具有高度的灵活性、正负90度的寻的器离轴视角、发射后锁定目标能力、防对抗图像处理能力。
德国毛塞公司BK27“毛塞”机炮是一种转膛炮,其特点是采用闭合无链供弹系统,消除了抛弃弹壳和弹链时造成的危险,使现有系统的体积减小60%。
欧洲导弹设计局(MBDA)“硫黄”(Brimstone)反坦克导弹是在美国“海尔法”反坦克导弹基础上研制的,提高昼夜、全天候条件下的自主式攻击能力,并增大导弹射程。
欧洲导弹设计局(MBDA)“风暴阴影”(Storm Shadow)是世界上第一种隐形巡航导弹,该导弹系统飞行中段采用GPS全球定位加地形景像匹配制导,末段采用红外成像精确制导,因而具有极高的打击精度。同时,“风暴阴影”还大量采用了人工智能技术,可以自动识别目标,避免造成不必要的损失,因此也被许多军事专家称作目前世界上最完备的隐形导弹。
德国LFK和瑞典萨伯研制的“金牛座”(Taurus)导弹,射程350公里,可携带450千克弹头,具有末制导能力。
四、 欧洲“台风”战斗机具体技术参数
1、尺寸
机长:1596米;机高:528米;翼展:1095米,包括翼尖ECM吊舱;机翼面积:50平方米
2、重量
空重:10,995公斤;燃料容量:4,000个公斤;外面武器负载::6500-8,000公斤;最大起飞重量:23,000公斤
3、飞行性能
最高飞行速度:马赫 20+;低高度最大速度:1,390公里/小时(750节当量空速KEAS);最小速度:203公里/小时(110节当量空速);实用升限: 16,765米 (55,000英尺);计时到35,000英尺(10,600米) /马赫15:25 分钟;起飞距离:<700米;降落距离:<700米;作战半径:3,700公里(2,000海里);
4、作战半径
中途拦截使用10 分钟巡逻>750海里 (1,390公里);在定点附近空中巡逻3个小时>100海里 (185公里);地面攻击,高-低-高飞行轨迹>750海里 (1,390公里);地面攻击,高-高飞行轨迹>350海里 (650公里)
5、其它
航程:大于2,000海里 (3,700公里);限制过载:+9/-3;每飞行小时维护工时:9小时
动能拦截弹是一种由助推火箭和作为弹头的动能杀伤飞行器(KKV)组成,借助KKV高速飞行时所具有的巨大动能,通过直接碰撞摧毁目标的武器系统。20世纪80年代实施“战略防御计划”(SDI)以来,美国为导弹防御系统研制了多种KKV,其中包括地基中段防御系统的地基拦截弹(GBI)、“宙斯盾”导弹防御系统的“标准”3(SM-3)海基拦截弹、末段高空区域防御系统(THAAD)拦截弹、“爱国者”3(PAC-3)拦截弹以及最新研制的可机动部署的动能拦截弹(KEI)。目前,GBI、SM-3、PAC-3和THAAD拦截弹等都已进入部署阶段。
一、地基拦截弹
地基拦截弹(GBI)是地基中段防御(GMD)系统的“武器”部分,是一种先进的动能杀伤防御武器,其任务是在地球大气层外拦截来袭的弹道导弹弹头并利用“直接碰撞”技术将其摧毁,即在大气层外(100km以上的高度)拦截来袭导弹。在GBI飞行过程中,作战管理指控系统通过飞行中拦截弹通信系统向其发送信息,修正来袭弹道导弹的方位信息,使得GBI弹上探测器系统能够识别指定的目标并进行寻的。
GBI有两种型号,一种是部署在美国本土的三级动能拦截弹,另一种是计划部署在欧洲的两级动能拦截弹。
1 美国本土部署的三级GBI
美国本土部署的GBI包括一个外大气层杀伤飞行器(EKV,以碰撞方式摧毁弹头)、三级固体助推火箭以及发射拦截弹所需的地面指挥和发射设备。波音北美公司和休斯公司(现已并入雷神公司)设计的EKV分别于1997年和1998年进行了试验。1998年11月,选中雷神公司的EKV。但波音北美公司继续研制EKV,作为主要的备选方案。EKV本身是一个能够自主作战的高速飞行器,由红外导引头、制导装置、姿轨控推进系统和通信设备等组成。雷神公司的EKV重64kg,长约14m,直径06m。它采用惯性测量装置制导,依靠激光起爆系统执行各种指令,如在拦截弹助推段打开阀门和点燃点火器等。其导引头采用了一种三镜面不散光望远镜系统,将成像聚集到一个由两个波束分离器和三个256×256焦面阵组成的光学试验台组件上。为了保证冗余度,每个焦面阵都有各自独立的电子器件和信号处理信道,但三个信道的数据都将汇集到一个数据处理器中。据称,当光进入第一个波束分离器后,部分能量被反射到一个硅CCD焦面阵上,部分光则通过该分离器。在通过第二个波束分离器时,部分能量被反射到碲镉汞焦面阵。剩余的光继续前行,最后撞在第二个碲镉汞焦面阵上。这样,光通过每个光反射部件其波段依次变短,物体被三种不同的探测器成像,而且每个探测器是在同一时间看同一物体,只是带宽不同而已。采用这种方案有很多优点:第一,消除了在不同时间由不同波段对一个物体成像所带来的问题;第二,采用三个单独的焦面阵,如果一个或两个焦面阵出现故障,仍能继续执行任务;第三,这种系统的光学部分无需致冷,碲镉汞焦面阵的工作温度约为70K。
关于助推火箭,美国导弹防御局(MDA)曾考虑多种方案,其中有研制新的助推火箭和改进现有“民兵”导弹的助推火箭等。1998年8月,当时的弹道导弹防御局(BMDO)决定以商用助推火箭为GBI的助推火箭(BV)方案。其一级发动机采用阿联特公司的GEM-40VN固体发动机(最初用于德尔它2火箭),二级和三级发动机采用考顿公司的Orbus 1A发动机。但该计划进展并不顺利,到2001年8月进行飞行试验时,已经比原进度落后了18个月。MDA最终调整采购战略,决定由轨道科学公司研制新的助推火箭(命名为OSC Lite),而洛马公司接手波音公司的商用助推火箭(重新命名为BV+)的工作。轨道科学公司的助推火箭为三级火箭系统,它的很多部件来自该公司的“飞马座”、“金牛座”和“人牛怪”火箭。
目前,轨道科学公司已经成功进行了两次助推火箭飞行试验。2003年2月7日,成功完成了首次飞行试验。该助推火箭从加利福尼亚州范登堡空军基地发射,飞行高度达到了1800km,飞行距离达到距发射场5600km。根据飞行试验后对所采集数据的初步分析,助推火箭的所有主要目标均已实现,包括检验拦截弹的设计和飞行特性、通过机载设备采集飞行数据、确认推进系统预期达到的性能指标。2003年8月16日,轨道科学公司圆满完成第二次助推火箭发射,其试验目的包括检验火箭的设计和飞行特性;确认制导、控制和推进系统的性能。
而洛马公司的助推火箭首飞试验推迟到了2004年1月。该公司研制的助推火箭一直受技术问题和工业事故所困扰,远远落后于轨道科学公司助推火箭的发展。但按照目前的战略,MDA支持上述两家公司研制助推火箭,从而降低导弹防御计划的风险。
因此,从2004年以来进行的GMD系统飞行试验以及所部署的地基拦截弹采用的均是轨道科学公司研制的助推器,而之前飞行试验采用的只是一种代用的两级助推火箭。截至2008年,美国已经部署了24枚动能拦截弹,其中21枚部署在阿拉斯加,3枚部署在加利福尼亚州的比尔空军基地。预计到2013年左右,在美国本土部署的GBI将达到44枚左右。
2 计划在欧洲部署的两级GBI
美国目前已经决定在欧洲部署导弹防御设施,包括在波兰建立拦截弹阵地,2011~2013年间部署10枚远程地基拦截弹;将现在太平洋试验靶场使用的地基X波段雷达样机(GBR-P)改进后部署在捷克。
在欧洲部署的GBI与美国本土部署的GBI基本相同,也是由助推火箭和EKV组成;但不同的是美国本土部署的GBI采用三级助推火箭,而欧洲部署的GBI采用两级助推火箭。两级GBI的最大速度略低于三级GBI,约7km/s,拦截高度200km。MDA称这种拦截弹更适于在欧洲的交战距离和时间要求。该拦截弹地下发射井的直径和长度比“民兵”3导弹等进攻型导弹所用的地下发射井小得多。
二、“标准”3海基拦截弹
“标准”3(SM-3)导弹是“宙斯盾”海基导弹防御系统采用的拦截弹。该弹包括SM-3 Block 0基本型、SM-3 Block 1型系列(1型、1A型、1B型)和Block 2型系列(2型和2A型)。目前,美国已经部署了少量的SM-3 Block 1型拦截弹,正在研制Block 1B型以及Block 2型系列。
1 SM-3 Block 1型系列
SM-3 Block 1型系列导弹(直径约035m)的关机速度在3~35km/s之间,具备拦截近程和中程弹道导弹的能力。
SM-3 Block 1型导弹是以大气层内防御使用的两级SM-2 Block 4A导弹为基础,改进成四级大气层外使用的拦截导弹。SM-3导弹第一级、第二级采用了SM-2 Block 4A型导弹的发动机(MK-72助推器和MK-104双推力火箭发动机),增加了第三级火箭发动机、一个新的头锥和外大气层轻型射弹(LEAP)动能弹头。第三级火箭发动机(TSRM)的设计是以美国空军菲利普斯实验室“先进固体轴向级”(ASAS)计划所开发的技术为基础。为了提高能量管理的灵活性,TSRM现包括两个独立的推进剂药柱,按照指令两次点火。两次脉冲工作能独立地按照指令点火,以获得最大的时间上的灵活性。第一个脉冲为第三级提供变轨机动,而第二个脉冲能用于修正相对位置误差,这种误差在中段飞行期间有可能增大。对于较短交战距离来说,可能不需要第二个脉冲。第一个脉冲发动机熄火参数和第二个脉冲发动机点火参数由大气层外中段导引算法计算产生。
TSRM的前面是一个改进的制导设备段(GS)。把制导设备段放在第三级上,可为动能弹头提供更大的空间,主要作用包括:(1)用于远程飞行的电力设备;(2)“宙斯盾”武器系统的通信;(3)遥测;(4)飞行终止电子设备;(5)GPS辅助的惯性导航(GAINS)。GAINS用于在拦截弹中段飞行期间提供较高的制导精度。GPS的信息与雷达的修正数据相结合,可以为拦截弹提供更高的状态精度。为了确保高拦截成功率,SM-3导弹即使在没有GPS数据的情况下也能作战使用。
拦截弹的第四级是LEAP动能弹头。动能弹头本身能自动调节方向和高度,作大机动飞行。LEAP动能弹头高度模块化,结构紧凑,已经进行了空间试验,用于防御中远程弹道导弹。为了提高动能弹头的系统性能、部署能力及费效比等,LEAP必须控制在10kg量级,一般在6~18kg之间,带有弹射机构的LEAP为167kg,长约056m,直径0254m。LEAP动能弹头主要由导引头、制导设备、固体轨姿控系统(SDACS)以及接口弹射器机构等四部分组成。SDACS包括一个主发动机和两个脉冲发动机。在2003年6月进行的FM-5飞行试验中,SDACS系统主发动机工作(即在持续燃烧模式下)使弹头过热,因此其它两个脉冲(脉冲1和脉冲2)使转向球出现裂纹。为此,2004年部署的首批5枚SM-3 Block 1型导弹只具备持续燃烧的功能,禁用了两次脉冲燃烧。目前正在对SDACS系统进行改进。
SM-3 Block 1型导弹的动能弹头采用单色长波红外导引头和固体SDACS推进系统,具备目标识别能力,在海基导弹防御系统飞行试验中成功地完成了拦截靶弹的任务。
SM-3 Block 1A型导弹与Block 1型导弹的区别不大,只是在Block 1型导弹的基础上改进了某些部件。Block 1A型导弹仍然采用单色导引头,其动能弹头采用了全反射光学系统和先进的信号处理器。
目前雷神公司还在开发SM-3 Block 1B。该型导弹包括先进的双色红外导引头、先进的信号处理器和一套节流轨姿控系统(TDACS)。TDACS能够动态调整弹体的推力和运转时间,而且很可能会提供更大的推力,使系统应对不同威胁的能力更强。
2 SM-3 Block 2型系列
美国还正在与日本共同研制SM-3 Block 2型和Block 2A型导弹(直径约为053m),关机速度将比Block 1型系列导弹提高45%~60%,达到5~55km/s左右,具备拦截洲际弹道导弹的能力。美日的研制工作由美国的雷神公司和日本的三菱重工公司共同承担。日本主要参与导引头、轨姿控系统(DACS)、第二级火箭发动机和蚌壳式头锥的研制。Block 2型的主要改进如下:
● 第二级将采用直径53cm的火箭发动机;
● 动能弹头采用双色导引头,对突防装置具有更强的识别能力;
● 改进动能弹头信号处理器,视场内识别的弹头数量增加;
● DACS可能采用延长固体燃料燃烧时间或增加DACS长度的液体DACS或液体/固体燃料混合系统;
● 新型蚌壳式头锥。
SM-3 Block 2A型导弹则是在Block 2型导弹的基础上,采用了比Block 2型更大的动能弹头,提高动能弹头的轨控能力。MDA计划2009年进行Block 2型拦截弹火箭发动机试验,2013年左右部署Block 2型导弹,2015年部署Block 2A型导弹。
三、THAAD拦截弹
THAAD是一种高速动能杀伤拦截导弹,由固体火箭推进系统、KKV和连接这两部分的级间段等部分组成。THAAD全弹长617m,最大弹径037m,弹重660kg。
KKV主要由捕获和跟踪目标的中波红外导引头、制导电子设备(包括电子计算机和采用激光陀螺的惯性测量装置)以及用于机动飞行的轨姿控推进系统组成。整个拦截器(包括保护罩)长2325m,底部直径为037m,重量为40~60kg。
KKV装在一个双锥体结构内:前锥体为不锈钢制造,其上有一个矩形的非冷却蓝宝石板,作为导引头观测目标的窗口;后锥体用复合材料制造。为了保护导引头及其窗口,在前锥体的前面还有一个保护罩,由两块蚌壳式的保护板组成,在导引头即将捕获目标之前抛掉。在大气层内飞行期间,保护罩遮盖在头锥上,以减小气动阻力和保护导引头窗口不受气动加热。
导引头的设计包括一个全反射Korsch光学系统和凝视焦平面阵列。THAAD拦截弹在前7次飞行试验中,其红外导引头采用硅化铂焦平面阵列,阵列规模据信为256×256元。从第8次试验起,THAAD拦截弹的红外导引头改为碲化铟焦平面阵列,很可能是多色的焦平面阵列。
KKV的变轨与姿控系统提供姿态、滚动和稳定控制,也提供最后拦截交战的变轨能力。轨控和姿控系统包括单独的氧化剂箱、推进剂箱、增压剂箱和轨控与姿控发动机。轨控系统由4台发动机组成,姿控系统由6台较小的发动机组成(4台俯仰与滚动控制发动机,2台偏航控制发动机)。
用于制导的集成电子设备组件包括几台简化指令的计算机,用以改进直接碰撞杀伤制导;而采用环形激光陀螺的惯性测量装置用于测量和稳定平台的运动,并作为寻的头的测量基准。
THAAD拦截弹发射前由拦截弹装运箱提供保护。该装运箱用石墨环氧树脂材料制造,以使重量最小。装运箱采用气密式密封,在拦截弹储存或运输时提供保护。装运箱也起发射筒的作用,被紧固在有10枚拦截弹的托盘上。该拦截弹的托盘再安装在发射车上。拦截弹直接从装运箱中发射出去。
2007年1月,洛马公司被授予生产THAAD的合同,包括48枚拦截弹、6辆发射车和2个火力控制与通信单元,2008年部署了首批24枚拦截弹。美国陆军计划最终将采购1400多枚THAAD拦截弹。
四、可机动部署的动能拦截弹
GBI、SM-3、THAAD和PAC-3拦截弹等都属于动能拦截弹。但这些拦截弹都是单一用途的,只能用于各自的武器平台系统。这些拦截弹的助推器多数是由原有导弹武器系统的助推器改进而成,如SM-3和PAC-3的助推器都是分别由相同名称的舰空导弹和地空导弹的助推器改进而成,GBI助推器的早期方案也是采用“民兵”3导弹的助推器,后来调整为采用商业运载火箭的发动机。这些助推器的加速性能都不高,存在着两个主要缺陷:一是应用平台单一,二是性能受到限制。这些缺陷使拦截弹的效费比难以提高,在作战中也缺乏灵活性。
因此,美国从2002年就已经开始考虑研制下一代可机动部署的多用途(用于助推段、上升段和中段拦截)动能拦截弹(KEI)。其目的是通过通用助推器与有效载荷的逐渐集成,利用可机动部署能力和战场空间的交战灵活性来逐步增强一体化导弹防御体系的多层次拦截能力和健壮性,并且达到较高的效费比。KEI要达到的这些能力是一体化弹道导弹防御系统(BMDS)采办策略中非常重要的目标。
在KEI方案中将设计一种通用的集装箱式的高加速度拦截弹。KEI由机动发射车、拦截弹和作战管理系统组成。一个KEI连包括5辆机动发射车(每个发射车装备2枚拦截导弹)和6辆运载作战管理系统的高机动性多用途轮式车辆(每辆装载4个S波段天线的卡车)。利用7架C-17运输机可以在24h内将一个KEI连部署到世界任何地方,并且能在部署后3h内做好作战准备。
KEI拦截弹长约118m,弹径102m,重1044t,体积约是SM-3的两倍。KEI的杀伤器由自动导引系统、SM-3导弹的电子系统以及为GBI研制的轨姿控系统等组成。KEI可在60s的时间内加速到6km/s,速度约是SM-3 Block 1型导弹的两倍。
按照最初的计划,KEI旨在研制成一种新型可机动部署的助推段/上升段动能拦截弹,作为机载激光助推段拦截系统的后备方案。但是随着该计划的发展,MDA已将KEI助推器按通用助推器使用,与多用途杀伤飞行器和先进的具有目标识别能力的有效载荷(如子母拦截器MKV)进行集成,以增强GMD、“宙斯盾”、THAAD和PAC-3等的能力。
KEI计划目前进展比较顺利,成功地进行了第一级和第二级发动机静态点火试验,初步验证了这两级发动机应用于高加速度、高速度以及高机动能力导弹方案的可行性。今后,还将陆续进行一系列发动机静态点火试验,利用获取的数据进一步优化设计,为2009年计划进行的首次助推器飞行试验做准备。
KEI既可陆基部署,也可海基部署。预计,陆基KEI将于2014~2015年左右具备初始作战能力,海基KEI的部署时间尚未确定。
五、PAC-3拦截弹
PAC-3型导弹由一级固体助推火箭、制导设备、雷达寻的头、姿态控制与机动控制系统和杀伤增强器等组成。弹头与助推火箭在飞行中不分离,始终保持一个整体。PAC-3导弹的杀伤增强器增大了拦截目标的有效直径。该装置位于助推火箭与制导设备段之间,长127mm,重111kg。杀伤增强器上有24块0214kg重的破片,分两圈分布在弹体周围,形成以弹体为中心的两个破片圆环。当杀伤增强器内的主装药爆炸时,这些破片以低径向速度向外投放出去。
六、新型动能拦截器——子母拦截器
如何从“威胁云团”(由弹头、弹体和诱饵组成)中识别来袭弹头是目前中段防御系统面临的重大挑战之一。而GBI和SM-3导弹目前均是携带单个动能拦截器,在无法有效解决识别目标问题的情况下,拦截一枚具有复杂突防装置的导弹就可能需要多枚拦截弹。为此,MDA于2002年公布了微型杀伤拦截器(MKV)计划,即利用微型化技术,使一枚拦截弹携带数十个拦截器,采用一种“多对多”的策略来有效弥补弹头识别方面的不足,降低对来袭导弹发射前的情报需求和对导弹防御系统识别能力的需求。
冷战时期,美苏1972年签订的《反导条约》严格限制研制子母杀伤器用于国家导弹防御中。但由于该条约存在一些漏洞,美国实际上已经很早就开始相关技术的研究。20世纪90年代中期,美国海军与当时的弹道导弹防御局合作,研制一种用于战区导弹防御系统的微型拦截器——LEAP。2002年6月,美国退出《反导条约》后,MKV计划正式对外公布。2004年,洛马公司获得研制和验证微型杀伤器的合同,为期8年,要求拦截器和母舱适用于现有的以及计划发展的各种助推火箭。同时,微型拦截器计划正式更名为子母拦截器(MKV)。
MKV体积小,重量轻,对运载工具的要求较低。新MKV概念是针对GMD目标识别问题提出来的,未来可用于GBI、SM-3和KEI上。MKV计划引进了一种双色导引头和改进的液体轨姿控系统。MDA曾估计单个拦截器的重量在2~10kg之间。现在预计每个拦截器大约重5kg,直径15~20cm,长25cm,大小如咖啡罐。具体携带的拦截器数量是保密的,如果使用GBI携带的话,拦截器应在10个以上。MDA和洛马公司的官员一直暗示,一枚拦截弹将可以携带24个拦截器或者更多。但是如果现在的估计是准确的(即每个拦截器为5kg),现有的或者计划研制的助推火箭能够携带的拦截器数量似乎将大大少于24个。而且,由于拦截器必须有足够的质量,以便采用“碰撞杀伤”的方式进行拦截,因此不能无限制地减小拦截器的尺寸。
MKV的具体方案如下:拦截弹发射后,在导弹防御系统探测器(包括海基X波段雷达以及天基跟踪与监视系统)的引导下飞向目标。母舱与助推火箭分离后,利用自身配置的目标识别装置探测目标,为拦截器分配打击目标的任务,释放拦截器。母舱上的远程红外探测器探测、跟踪及识别弹头和诱饵。每个拦截器都会从母舱接收到瞄准信息。对于每一个已识别的弹头可能需要分配几个拦截器进行拦截。每个拦截器也都在自身的光学探测器(工作在可见光和红外波段)制导下,飞向“威胁云团”,将所有可能的目标全部摧毁。即便与母舱分离,拦截器仍将能实时接收到母舱提供的目标修正信息。
目前MKV计划的重点是研制所需的微型化硬件。拦截器微型化技术面临严重的挑战,如何消除拦截器封装组件产生的热量也是亟待解决的难题。
2005年完成了拦截器导引头关键设计评审、导引头软件产品设计评审、成像稳定性试验、导引头软件关键设计评审以及制造导引头部件的电路板。2006年3月,洛马公司完成了首个“探索者”导引头的研制,在硬件回路设施中进行试验,模拟杀伤器的振动工作环境。在复杂的光电试验中,验证了导引头和相关杀伤器电子设备的功能。2006年7月,洛马公司又进行了MKV拦截器轨姿控推进装置的初始试验,验证使用单组元液体推进剂的轨姿控系统用于MKV的可行性。试验表明,实际飞行重量的推进装置样机以及阀门组合等达到了规定的性能和寿命指标。
MKV计划在完成硬件回路试验、杀伤器(KV)悬浮试验、KV飞行试验后,最终将于太平洋试验台上对母舱(CV)和KV等进行BMDS系统级飞行试验。预计2010~2011年间开始系统飞行试验。
MKV的技术可能会带动助推段拦截技术的发展,甚至带动天基拦截技术的发展。但是,也有技术专家对MKV技术提出质疑。他们认为,MKV可能在对付诱饵方面比较有效,但对其它类型的突防措施却不能提供什么帮助,例如通过在弹头表面涂上颜色等简单的战术就会影响光学探测器的探测性能等。
欢迎分享,转载请注明来源:表白网
评论列表(0条)