无人驾驶飞机:X-43A创造了97马赫(接近10倍音速)的速度,前无古人,世界最快 有人驾驶飞机:SR-71 黑鸟,SR-71 Blackbird“黑鸟”是洛克希德公司应美国空军的要求于1959年秘密研制一种速度达到M3的军用飞机。飞行高度达到30000米,最大速度达到35倍音速,这称之为“双三”。因此SR-71比现有绝大多数战斗机甚至防空导弹都要飞得高、飞得快,说它是最快的飞机一点也不为过,好象90年退役 。 这要看是什么类型的导弹,导弹分为很多类型,最快的是弹道导弹,最快可以达到16马赫。最快的防空导弹是美国的爱国者3型,最快的反舰导弹是俄罗斯的日炙导弹,最快达到28马赫。至于空空导弹都差不多,在3马赫左右,比较优秀的有美国的响尾蛇,法国的米卡,中国的霹雳12、SD-10等。
有
2012年珠海航展的时候就亮相了,天雷TL
当时亮相的是TL-500(无动力航空撒布器),射程在50公里左右
按照生产厂的说法,还有一种是TL-1000,射程250-300公里,有一个小型涡轮发动机
本次航展又出来了最新的天雷
实际上金牛座并不是什么高精尖的东西,说白了就是利用INS/GPS复合制导,替代了复杂的地形匹配系统的产物
中国解决了激光脱落和北斗导航,搞出来自然没问题
EF-2000虽然隐身和超音速巡航等性能比不上F-22,但据称,它只用了F-22一半的成本具有F-22的90%空战能力以及远超过F-22的对地攻击能力。
欧洲“台风”(Eurofighter Typhoon)战斗机由德国、英国、意大利和西班牙四个国家共同研制,是采用前置鸭式三角翼、双发、单垂尾、机腹进气道布局,具有超视距、空中超机动攻击能力和格斗能力的多用途空中优势战斗机,还具有短距起降(STOL)能力、“超音速巡航”能力和一定的对地攻击能力,不使用加力燃烧室就能在音速之上持续飞行。
1、 设计
欧洲“台风”战斗机广泛采用碳素纤维复合材料、玻璃纤维增强塑料、铝锂合金、钛合金和铝合金等材料制造,复合材料占全机比例约40%。采用一些隐形技术,包括低雷达横截面和被动传感器。前置鸭式三角翼构造空气动力学不稳定设计提供高度的敏捷性(特别在超音速)、低空气阻力和可提高升力,机翼使用无缝隙襟翼。飞行员通过每秒自动控制40次的飞行控制计算机和全权4余度主动控制数字式电传系统控制飞机去提供好的飞行控制特性。在不使用矢量发动机的情况下就具有优异的超机动性能,得益于良好的机身设计,不但维持高速优异操纵性、也具有很好的缠斗能力,特别是高速高过载缠斗。为增加航程,还具有空中加油能力。
2、 驾驶座舱
飞行员控制系统具有特色的是采用语音控制操纵杆系统(VTAS),直接的声音输入允许飞行员使用声音命令实现模态选择和数据登录程序,这也是世界上第一种语音操控系统,覆盖传感器、武器控制、防卫帮助管理和飞行中的操纵,提供24个原来需要指尖控制的指令。飞行员配备英国宇航公司(BAE)“打击者”(Striker)头盔安装显示系统 (HMS)。平视显示器显示飞行参考数据、武器瞄准、插入字幕提示和前视红外(FLIR)影像。驾驶间有三个多功能彩色下视显示器(MHDD),显示战术情形、系统状况和地图。一个由英国宇航公司(BAE)与罗克韦尔·柯林斯数据链方案LLC公司(DLS)组成的国际合作EuroMIDS集团公司,提供Link 16军用数据链多功能信息分发系统(MIDS)小体积终端用于数据的安全传递。另外,还安装英国宇航公司(BAE)TERPROM地面接近警告系统。
3、动力装置
欧洲“台风”战斗机安装2台欧洲发动机公司(Eurojet)EJ200 双轴涡扇发动机(加力燃烧室),推重比9。最大的静推力2 x 60千牛顿 (13,490磅),加力推力2 x 90千牛顿 (20,250磅) 。采用数字控制和综合最佳状态监视系统,单晶涡扇叶片,一个收敛/扩散排气喷嘴。1998年开始设计矢量喷嘴,除了增加机动能力,主要用于能够更短距离起飞来实现上舰操作,目前EJ-200还在进行推力提升改进。
4、电子对抗系统
欧洲“台风”战斗机装备先进的“频谱防御辅助子系统”(DASS),安装在机体结构内和航空电子系统整合。该系统由英国宇航公司(BAE)系统航空电子设备公司、西班牙的英迪拉(Indra)系统公司和意大利的Elettronica公司共同组成的EuroDASS公司合作发展,欧洲航宇防务(EADS)在2001年10月加入。“频谱防御辅助子系统”对单一或复合的威胁提供完全自动的响应并进行威胁优先次序评定。“频谱防御辅助子系统”包括一个电子对策/支援措施系统(ECM/ESM),前面和后面的导弹接近告警系统,可超音速时使用的拖曳诱骗系统,激光告警接收机和SaabTech 电子技术公司BOL箔条和曳光弹撒布系统。航空电子系统基于北约组织标准数据链,采用光导纤维信息通路。
5、传感器
欧洲“台风”战斗机安装一套CAPTOR ECR 90多模式X-波段脉冲多普勒雷达,是由欧洲雷达公司(Euroradar)合作发展,最大探测距离约150公里,据称是目前扫描最快的机载机械扫描雷达,具有极高的数据更新率。ECR 90多模式雷达有三个处理信道,第三个信道作为干扰机分级、干涉消隐和旁瓣无效。欧洲雷达公司(Euroradar)由英国宇航公司(BAE)、西班牙的英迪拉(Indra)系统公司、意大利FIAR公司和欧洲航宇防务(EADS)德国分部合作组成。EUROFIRST公司被动红外机载跟踪装置(PIRATE)安装在机身左舷风挡玻璃前面。EUROFIRST公司由意大利Galileo Avionica (FIAR) ,英国泰利斯光电子技术公司和西班牙Tecnobit公司合作组成。被动红外机载跟踪装置(PIRATE)能在3-5 和 8-11微米两种光谱带工作。当在空对空任务中使用,它如一个红外搜寻和跟踪系统 (IRST) 的职能,提供被动目标探测和跟踪;在空对地任务中,它履行多目标捕获和辨识,也提供导航和降落帮助功能,还提供一个易操纵的图像到头盔安装显示器上。
三、 欧洲“台风”战斗机的机载武器系统
欧洲“台风”战斗机机内安装一门27毫米毛瑟机炮,用于武器携带共有13个挂点,每个机翼下各有四个,进气道正下方一个,进气道两边角落各两个半埋式挂点(装备超视距空空导弹)。一套武器控制系统(ACS)管理武器选择、发射和监控武器状况。欧洲战斗机能使用广泛多样性空对空和空对地武器。
主要欧洲机载武器系统
欧洲“台风”战斗机为了同美、俄等其他国家机载武器系统抗衡,将采用大量由欧洲国家共同研制的先进机载武器。
MBDA公司、EADS CASA公司、INMIZE公司和萨伯动力公司共同研制的“流星”(Meteor)中程空对空导弹,采用冲压/火箭复合推进,计算机自动调节推力,使用中段指令修正、末段主动方式导引,最大射程超过100公里。欧洲导弹设计局(MBDA)ASRAAM是欧洲新一代近距格斗空对空导弹,据称在英国空军鉴定中,该导弹的截获与跟踪距离是AIM-9导弹的2倍,在绝大多数情况下都是首发命中目标,增强了飞机的作战能力;另一种是由德国博登湖机械技术公司(BGT)研制的“虹膜”(IRIS)-T(红外成像系统-尾翼推进矢量控制)先进近距空对空导弹,采用推进矢量控制技术,IRIS-T导弹具有高度的灵活性、正负90度的寻的器离轴视角、发射后锁定目标能力、防对抗图像处理能力。
德国毛塞公司BK27“毛塞”机炮是一种转膛炮,其特点是采用闭合无链供弹系统,消除了抛弃弹壳和弹链时造成的危险,使现有系统的体积减小60%。
欧洲导弹设计局(MBDA)“硫黄”(Brimstone)反坦克导弹是在美国“海尔法”反坦克导弹基础上研制的,提高昼夜、全天候条件下的自主式攻击能力,并增大导弹射程。
欧洲导弹设计局(MBDA)“风暴阴影”(Storm Shadow)是世界上第一种隐形巡航导弹,该导弹系统飞行中段采用GPS全球定位加地形景像匹配制导,末段采用红外成像精确制导,因而具有极高的打击精度。同时,“风暴阴影”还大量采用了人工智能技术,可以自动识别目标,避免造成不必要的损失,因此也被许多军事专家称作目前世界上最完备的隐形导弹。
德国LFK和瑞典萨伯研制的“金牛座”(Taurus)导弹,射程350公里,可携带450千克弹头,具有末制导能力。
四、 欧洲“台风”战斗机具体技术参数
1、尺寸
机长:1596米;机高:528米;翼展:1095米,包括翼尖ECM吊舱;机翼面积:50平方米
2、重量
空重:10,995公斤;燃料容量:4,000个公斤;外面武器负载::6500-8,000公斤;最大起飞重量:23,000公斤
3、飞行性能
最高飞行速度:马赫 20+;低高度最大速度:1,390公里/小时(750节当量空速KEAS);最小速度:203公里/小时(110节当量空速);实用升限: 16,765米 (55,000英尺);计时到35,000英尺(10,600米) /马赫15:25 分钟;起飞距离:<700米;降落距离:<700米;作战半径:3,700公里(2,000海里);
4、作战半径
中途拦截使用10 分钟巡逻>750海里 (1,390公里);在定点附近空中巡逻3个小时>100海里 (185公里);地面攻击,高-低-高飞行轨迹>750海里 (1,390公里);地面攻击,高-高飞行轨迹>350海里 (650公里)
5、其它
航程:大于2,000海里 (3,700公里);限制过载:+9/-3;每飞行小时维护工时:9小时
据13日报道,韩国空军12日成功进行了“金牛座”(TAURUS)远程空地导弹的首次实弹发射,导弹从F-15K战机发射后,飞行约400公里后“准确命中了目标”。韩国军方人士称,本次试射证明了“金牛座”的优越性能。若敌人发起挑衅,空军将动用精确打击武器立即予以反击。
据悉,“金牛座”导弹最大射程500公里。但鉴于试射场地周边环境和安全,韩国空军当天将其飞行距离控制在400公里左右。“金牛座”从韩国中部泰安郡附近的半岛西部海域上空发射,在韩国南部群山市一座无人岛射击场上空盘旋两圈后命中目标。
“金牛座”是韩国“杀伤链系统”(Kill Chain,集探测、识别、决策、打击于一体的攻击系统)的主要组成部分。该导弹不仅可躲避敌军雷达探测,也可回避敌军的电磁干扰,可精确打击目标。韩军2013年采购170多枚“金牛座”,其中数十枚已在空军实战部署,去年10月初,空军决定再购买90枚。
动能拦截弹是一种由助推火箭和作为弹头的动能杀伤飞行器(KKV)组成,借助KKV高速飞行时所具有的巨大动能,通过直接碰撞摧毁目标的武器系统。20世纪80年代实施“战略防御计划”(SDI)以来,美国为导弹防御系统研制了多种KKV,其中包括地基中段防御系统的地基拦截弹(GBI)、“宙斯盾”导弹防御系统的“标准”3(SM-3)海基拦截弹、末段高空区域防御系统(THAAD)拦截弹、“爱国者”3(PAC-3)拦截弹以及最新研制的可机动部署的动能拦截弹(KEI)。目前,GBI、SM-3、PAC-3和THAAD拦截弹等都已进入部署阶段。
一、地基拦截弹
地基拦截弹(GBI)是地基中段防御(GMD)系统的“武器”部分,是一种先进的动能杀伤防御武器,其任务是在地球大气层外拦截来袭的弹道导弹弹头并利用“直接碰撞”技术将其摧毁,即在大气层外(100km以上的高度)拦截来袭导弹。在GBI飞行过程中,作战管理指控系统通过飞行中拦截弹通信系统向其发送信息,修正来袭弹道导弹的方位信息,使得GBI弹上探测器系统能够识别指定的目标并进行寻的。
GBI有两种型号,一种是部署在美国本土的三级动能拦截弹,另一种是计划部署在欧洲的两级动能拦截弹。
1 美国本土部署的三级GBI
美国本土部署的GBI包括一个外大气层杀伤飞行器(EKV,以碰撞方式摧毁弹头)、三级固体助推火箭以及发射拦截弹所需的地面指挥和发射设备。波音北美公司和休斯公司(现已并入雷神公司)设计的EKV分别于1997年和1998年进行了试验。1998年11月,选中雷神公司的EKV。但波音北美公司继续研制EKV,作为主要的备选方案。EKV本身是一个能够自主作战的高速飞行器,由红外导引头、制导装置、姿轨控推进系统和通信设备等组成。雷神公司的EKV重64kg,长约14m,直径06m。它采用惯性测量装置制导,依靠激光起爆系统执行各种指令,如在拦截弹助推段打开阀门和点燃点火器等。其导引头采用了一种三镜面不散光望远镜系统,将成像聚集到一个由两个波束分离器和三个256×256焦面阵组成的光学试验台组件上。为了保证冗余度,每个焦面阵都有各自独立的电子器件和信号处理信道,但三个信道的数据都将汇集到一个数据处理器中。据称,当光进入第一个波束分离器后,部分能量被反射到一个硅CCD焦面阵上,部分光则通过该分离器。在通过第二个波束分离器时,部分能量被反射到碲镉汞焦面阵。剩余的光继续前行,最后撞在第二个碲镉汞焦面阵上。这样,光通过每个光反射部件其波段依次变短,物体被三种不同的探测器成像,而且每个探测器是在同一时间看同一物体,只是带宽不同而已。采用这种方案有很多优点:第一,消除了在不同时间由不同波段对一个物体成像所带来的问题;第二,采用三个单独的焦面阵,如果一个或两个焦面阵出现故障,仍能继续执行任务;第三,这种系统的光学部分无需致冷,碲镉汞焦面阵的工作温度约为70K。
关于助推火箭,美国导弹防御局(MDA)曾考虑多种方案,其中有研制新的助推火箭和改进现有“民兵”导弹的助推火箭等。1998年8月,当时的弹道导弹防御局(BMDO)决定以商用助推火箭为GBI的助推火箭(BV)方案。其一级发动机采用阿联特公司的GEM-40VN固体发动机(最初用于德尔它2火箭),二级和三级发动机采用考顿公司的Orbus 1A发动机。但该计划进展并不顺利,到2001年8月进行飞行试验时,已经比原进度落后了18个月。MDA最终调整采购战略,决定由轨道科学公司研制新的助推火箭(命名为OSC Lite),而洛马公司接手波音公司的商用助推火箭(重新命名为BV+)的工作。轨道科学公司的助推火箭为三级火箭系统,它的很多部件来自该公司的“飞马座”、“金牛座”和“人牛怪”火箭。
目前,轨道科学公司已经成功进行了两次助推火箭飞行试验。2003年2月7日,成功完成了首次飞行试验。该助推火箭从加利福尼亚州范登堡空军基地发射,飞行高度达到了1800km,飞行距离达到距发射场5600km。根据飞行试验后对所采集数据的初步分析,助推火箭的所有主要目标均已实现,包括检验拦截弹的设计和飞行特性、通过机载设备采集飞行数据、确认推进系统预期达到的性能指标。2003年8月16日,轨道科学公司圆满完成第二次助推火箭发射,其试验目的包括检验火箭的设计和飞行特性;确认制导、控制和推进系统的性能。
而洛马公司的助推火箭首飞试验推迟到了2004年1月。该公司研制的助推火箭一直受技术问题和工业事故所困扰,远远落后于轨道科学公司助推火箭的发展。但按照目前的战略,MDA支持上述两家公司研制助推火箭,从而降低导弹防御计划的风险。
因此,从2004年以来进行的GMD系统飞行试验以及所部署的地基拦截弹采用的均是轨道科学公司研制的助推器,而之前飞行试验采用的只是一种代用的两级助推火箭。截至2008年,美国已经部署了24枚动能拦截弹,其中21枚部署在阿拉斯加,3枚部署在加利福尼亚州的比尔空军基地。预计到2013年左右,在美国本土部署的GBI将达到44枚左右。
2 计划在欧洲部署的两级GBI
美国目前已经决定在欧洲部署导弹防御设施,包括在波兰建立拦截弹阵地,2011~2013年间部署10枚远程地基拦截弹;将现在太平洋试验靶场使用的地基X波段雷达样机(GBR-P)改进后部署在捷克。
在欧洲部署的GBI与美国本土部署的GBI基本相同,也是由助推火箭和EKV组成;但不同的是美国本土部署的GBI采用三级助推火箭,而欧洲部署的GBI采用两级助推火箭。两级GBI的最大速度略低于三级GBI,约7km/s,拦截高度200km。MDA称这种拦截弹更适于在欧洲的交战距离和时间要求。该拦截弹地下发射井的直径和长度比“民兵”3导弹等进攻型导弹所用的地下发射井小得多。
二、“标准”3海基拦截弹
“标准”3(SM-3)导弹是“宙斯盾”海基导弹防御系统采用的拦截弹。该弹包括SM-3 Block 0基本型、SM-3 Block 1型系列(1型、1A型、1B型)和Block 2型系列(2型和2A型)。目前,美国已经部署了少量的SM-3 Block 1型拦截弹,正在研制Block 1B型以及Block 2型系列。
1 SM-3 Block 1型系列
SM-3 Block 1型系列导弹(直径约035m)的关机速度在3~35km/s之间,具备拦截近程和中程弹道导弹的能力。
SM-3 Block 1型导弹是以大气层内防御使用的两级SM-2 Block 4A导弹为基础,改进成四级大气层外使用的拦截导弹。SM-3导弹第一级、第二级采用了SM-2 Block 4A型导弹的发动机(MK-72助推器和MK-104双推力火箭发动机),增加了第三级火箭发动机、一个新的头锥和外大气层轻型射弹(LEAP)动能弹头。第三级火箭发动机(TSRM)的设计是以美国空军菲利普斯实验室“先进固体轴向级”(ASAS)计划所开发的技术为基础。为了提高能量管理的灵活性,TSRM现包括两个独立的推进剂药柱,按照指令两次点火。两次脉冲工作能独立地按照指令点火,以获得最大的时间上的灵活性。第一个脉冲为第三级提供变轨机动,而第二个脉冲能用于修正相对位置误差,这种误差在中段飞行期间有可能增大。对于较短交战距离来说,可能不需要第二个脉冲。第一个脉冲发动机熄火参数和第二个脉冲发动机点火参数由大气层外中段导引算法计算产生。
TSRM的前面是一个改进的制导设备段(GS)。把制导设备段放在第三级上,可为动能弹头提供更大的空间,主要作用包括:(1)用于远程飞行的电力设备;(2)“宙斯盾”武器系统的通信;(3)遥测;(4)飞行终止电子设备;(5)GPS辅助的惯性导航(GAINS)。GAINS用于在拦截弹中段飞行期间提供较高的制导精度。GPS的信息与雷达的修正数据相结合,可以为拦截弹提供更高的状态精度。为了确保高拦截成功率,SM-3导弹即使在没有GPS数据的情况下也能作战使用。
拦截弹的第四级是LEAP动能弹头。动能弹头本身能自动调节方向和高度,作大机动飞行。LEAP动能弹头高度模块化,结构紧凑,已经进行了空间试验,用于防御中远程弹道导弹。为了提高动能弹头的系统性能、部署能力及费效比等,LEAP必须控制在10kg量级,一般在6~18kg之间,带有弹射机构的LEAP为167kg,长约056m,直径0254m。LEAP动能弹头主要由导引头、制导设备、固体轨姿控系统(SDACS)以及接口弹射器机构等四部分组成。SDACS包括一个主发动机和两个脉冲发动机。在2003年6月进行的FM-5飞行试验中,SDACS系统主发动机工作(即在持续燃烧模式下)使弹头过热,因此其它两个脉冲(脉冲1和脉冲2)使转向球出现裂纹。为此,2004年部署的首批5枚SM-3 Block 1型导弹只具备持续燃烧的功能,禁用了两次脉冲燃烧。目前正在对SDACS系统进行改进。
SM-3 Block 1型导弹的动能弹头采用单色长波红外导引头和固体SDACS推进系统,具备目标识别能力,在海基导弹防御系统飞行试验中成功地完成了拦截靶弹的任务。
SM-3 Block 1A型导弹与Block 1型导弹的区别不大,只是在Block 1型导弹的基础上改进了某些部件。Block 1A型导弹仍然采用单色导引头,其动能弹头采用了全反射光学系统和先进的信号处理器。
目前雷神公司还在开发SM-3 Block 1B。该型导弹包括先进的双色红外导引头、先进的信号处理器和一套节流轨姿控系统(TDACS)。TDACS能够动态调整弹体的推力和运转时间,而且很可能会提供更大的推力,使系统应对不同威胁的能力更强。
2 SM-3 Block 2型系列
美国还正在与日本共同研制SM-3 Block 2型和Block 2A型导弹(直径约为053m),关机速度将比Block 1型系列导弹提高45%~60%,达到5~55km/s左右,具备拦截洲际弹道导弹的能力。美日的研制工作由美国的雷神公司和日本的三菱重工公司共同承担。日本主要参与导引头、轨姿控系统(DACS)、第二级火箭发动机和蚌壳式头锥的研制。Block 2型的主要改进如下:
● 第二级将采用直径53cm的火箭发动机;
● 动能弹头采用双色导引头,对突防装置具有更强的识别能力;
● 改进动能弹头信号处理器,视场内识别的弹头数量增加;
● DACS可能采用延长固体燃料燃烧时间或增加DACS长度的液体DACS或液体/固体燃料混合系统;
● 新型蚌壳式头锥。
SM-3 Block 2A型导弹则是在Block 2型导弹的基础上,采用了比Block 2型更大的动能弹头,提高动能弹头的轨控能力。MDA计划2009年进行Block 2型拦截弹火箭发动机试验,2013年左右部署Block 2型导弹,2015年部署Block 2A型导弹。
三、THAAD拦截弹
THAAD是一种高速动能杀伤拦截导弹,由固体火箭推进系统、KKV和连接这两部分的级间段等部分组成。THAAD全弹长617m,最大弹径037m,弹重660kg。
KKV主要由捕获和跟踪目标的中波红外导引头、制导电子设备(包括电子计算机和采用激光陀螺的惯性测量装置)以及用于机动飞行的轨姿控推进系统组成。整个拦截器(包括保护罩)长2325m,底部直径为037m,重量为40~60kg。
KKV装在一个双锥体结构内:前锥体为不锈钢制造,其上有一个矩形的非冷却蓝宝石板,作为导引头观测目标的窗口;后锥体用复合材料制造。为了保护导引头及其窗口,在前锥体的前面还有一个保护罩,由两块蚌壳式的保护板组成,在导引头即将捕获目标之前抛掉。在大气层内飞行期间,保护罩遮盖在头锥上,以减小气动阻力和保护导引头窗口不受气动加热。
导引头的设计包括一个全反射Korsch光学系统和凝视焦平面阵列。THAAD拦截弹在前7次飞行试验中,其红外导引头采用硅化铂焦平面阵列,阵列规模据信为256×256元。从第8次试验起,THAAD拦截弹的红外导引头改为碲化铟焦平面阵列,很可能是多色的焦平面阵列。
KKV的变轨与姿控系统提供姿态、滚动和稳定控制,也提供最后拦截交战的变轨能力。轨控和姿控系统包括单独的氧化剂箱、推进剂箱、增压剂箱和轨控与姿控发动机。轨控系统由4台发动机组成,姿控系统由6台较小的发动机组成(4台俯仰与滚动控制发动机,2台偏航控制发动机)。
用于制导的集成电子设备组件包括几台简化指令的计算机,用以改进直接碰撞杀伤制导;而采用环形激光陀螺的惯性测量装置用于测量和稳定平台的运动,并作为寻的头的测量基准。
THAAD拦截弹发射前由拦截弹装运箱提供保护。该装运箱用石墨环氧树脂材料制造,以使重量最小。装运箱采用气密式密封,在拦截弹储存或运输时提供保护。装运箱也起发射筒的作用,被紧固在有10枚拦截弹的托盘上。该拦截弹的托盘再安装在发射车上。拦截弹直接从装运箱中发射出去。
2007年1月,洛马公司被授予生产THAAD的合同,包括48枚拦截弹、6辆发射车和2个火力控制与通信单元,2008年部署了首批24枚拦截弹。美国陆军计划最终将采购1400多枚THAAD拦截弹。
四、可机动部署的动能拦截弹
GBI、SM-3、THAAD和PAC-3拦截弹等都属于动能拦截弹。但这些拦截弹都是单一用途的,只能用于各自的武器平台系统。这些拦截弹的助推器多数是由原有导弹武器系统的助推器改进而成,如SM-3和PAC-3的助推器都是分别由相同名称的舰空导弹和地空导弹的助推器改进而成,GBI助推器的早期方案也是采用“民兵”3导弹的助推器,后来调整为采用商业运载火箭的发动机。这些助推器的加速性能都不高,存在着两个主要缺陷:一是应用平台单一,二是性能受到限制。这些缺陷使拦截弹的效费比难以提高,在作战中也缺乏灵活性。
因此,美国从2002年就已经开始考虑研制下一代可机动部署的多用途(用于助推段、上升段和中段拦截)动能拦截弹(KEI)。其目的是通过通用助推器与有效载荷的逐渐集成,利用可机动部署能力和战场空间的交战灵活性来逐步增强一体化导弹防御体系的多层次拦截能力和健壮性,并且达到较高的效费比。KEI要达到的这些能力是一体化弹道导弹防御系统(BMDS)采办策略中非常重要的目标。
在KEI方案中将设计一种通用的集装箱式的高加速度拦截弹。KEI由机动发射车、拦截弹和作战管理系统组成。一个KEI连包括5辆机动发射车(每个发射车装备2枚拦截导弹)和6辆运载作战管理系统的高机动性多用途轮式车辆(每辆装载4个S波段天线的卡车)。利用7架C-17运输机可以在24h内将一个KEI连部署到世界任何地方,并且能在部署后3h内做好作战准备。
KEI拦截弹长约118m,弹径102m,重1044t,体积约是SM-3的两倍。KEI的杀伤器由自动导引系统、SM-3导弹的电子系统以及为GBI研制的轨姿控系统等组成。KEI可在60s的时间内加速到6km/s,速度约是SM-3 Block 1型导弹的两倍。
按照最初的计划,KEI旨在研制成一种新型可机动部署的助推段/上升段动能拦截弹,作为机载激光助推段拦截系统的后备方案。但是随着该计划的发展,MDA已将KEI助推器按通用助推器使用,与多用途杀伤飞行器和先进的具有目标识别能力的有效载荷(如子母拦截器MKV)进行集成,以增强GMD、“宙斯盾”、THAAD和PAC-3等的能力。
KEI计划目前进展比较顺利,成功地进行了第一级和第二级发动机静态点火试验,初步验证了这两级发动机应用于高加速度、高速度以及高机动能力导弹方案的可行性。今后,还将陆续进行一系列发动机静态点火试验,利用获取的数据进一步优化设计,为2009年计划进行的首次助推器飞行试验做准备。
KEI既可陆基部署,也可海基部署。预计,陆基KEI将于2014~2015年左右具备初始作战能力,海基KEI的部署时间尚未确定。
五、PAC-3拦截弹
PAC-3型导弹由一级固体助推火箭、制导设备、雷达寻的头、姿态控制与机动控制系统和杀伤增强器等组成。弹头与助推火箭在飞行中不分离,始终保持一个整体。PAC-3导弹的杀伤增强器增大了拦截目标的有效直径。该装置位于助推火箭与制导设备段之间,长127mm,重111kg。杀伤增强器上有24块0214kg重的破片,分两圈分布在弹体周围,形成以弹体为中心的两个破片圆环。当杀伤增强器内的主装药爆炸时,这些破片以低径向速度向外投放出去。
六、新型动能拦截器——子母拦截器
如何从“威胁云团”(由弹头、弹体和诱饵组成)中识别来袭弹头是目前中段防御系统面临的重大挑战之一。而GBI和SM-3导弹目前均是携带单个动能拦截器,在无法有效解决识别目标问题的情况下,拦截一枚具有复杂突防装置的导弹就可能需要多枚拦截弹。为此,MDA于2002年公布了微型杀伤拦截器(MKV)计划,即利用微型化技术,使一枚拦截弹携带数十个拦截器,采用一种“多对多”的策略来有效弥补弹头识别方面的不足,降低对来袭导弹发射前的情报需求和对导弹防御系统识别能力的需求。
冷战时期,美苏1972年签订的《反导条约》严格限制研制子母杀伤器用于国家导弹防御中。但由于该条约存在一些漏洞,美国实际上已经很早就开始相关技术的研究。20世纪90年代中期,美国海军与当时的弹道导弹防御局合作,研制一种用于战区导弹防御系统的微型拦截器——LEAP。2002年6月,美国退出《反导条约》后,MKV计划正式对外公布。2004年,洛马公司获得研制和验证微型杀伤器的合同,为期8年,要求拦截器和母舱适用于现有的以及计划发展的各种助推火箭。同时,微型拦截器计划正式更名为子母拦截器(MKV)。
MKV体积小,重量轻,对运载工具的要求较低。新MKV概念是针对GMD目标识别问题提出来的,未来可用于GBI、SM-3和KEI上。MKV计划引进了一种双色导引头和改进的液体轨姿控系统。MDA曾估计单个拦截器的重量在2~10kg之间。现在预计每个拦截器大约重5kg,直径15~20cm,长25cm,大小如咖啡罐。具体携带的拦截器数量是保密的,如果使用GBI携带的话,拦截器应在10个以上。MDA和洛马公司的官员一直暗示,一枚拦截弹将可以携带24个拦截器或者更多。但是如果现在的估计是准确的(即每个拦截器为5kg),现有的或者计划研制的助推火箭能够携带的拦截器数量似乎将大大少于24个。而且,由于拦截器必须有足够的质量,以便采用“碰撞杀伤”的方式进行拦截,因此不能无限制地减小拦截器的尺寸。
MKV的具体方案如下:拦截弹发射后,在导弹防御系统探测器(包括海基X波段雷达以及天基跟踪与监视系统)的引导下飞向目标。母舱与助推火箭分离后,利用自身配置的目标识别装置探测目标,为拦截器分配打击目标的任务,释放拦截器。母舱上的远程红外探测器探测、跟踪及识别弹头和诱饵。每个拦截器都会从母舱接收到瞄准信息。对于每一个已识别的弹头可能需要分配几个拦截器进行拦截。每个拦截器也都在自身的光学探测器(工作在可见光和红外波段)制导下,飞向“威胁云团”,将所有可能的目标全部摧毁。即便与母舱分离,拦截器仍将能实时接收到母舱提供的目标修正信息。
目前MKV计划的重点是研制所需的微型化硬件。拦截器微型化技术面临严重的挑战,如何消除拦截器封装组件产生的热量也是亟待解决的难题。
2005年完成了拦截器导引头关键设计评审、导引头软件产品设计评审、成像稳定性试验、导引头软件关键设计评审以及制造导引头部件的电路板。2006年3月,洛马公司完成了首个“探索者”导引头的研制,在硬件回路设施中进行试验,模拟杀伤器的振动工作环境。在复杂的光电试验中,验证了导引头和相关杀伤器电子设备的功能。2006年7月,洛马公司又进行了MKV拦截器轨姿控推进装置的初始试验,验证使用单组元液体推进剂的轨姿控系统用于MKV的可行性。试验表明,实际飞行重量的推进装置样机以及阀门组合等达到了规定的性能和寿命指标。
MKV计划在完成硬件回路试验、杀伤器(KV)悬浮试验、KV飞行试验后,最终将于太平洋试验台上对母舱(CV)和KV等进行BMDS系统级飞行试验。预计2010~2011年间开始系统飞行试验。
MKV的技术可能会带动助推段拦截技术的发展,甚至带动天基拦截技术的发展。但是,也有技术专家对MKV技术提出质疑。他们认为,MKV可能在对付诱饵方面比较有效,但对其它类型的突防措施却不能提供什么帮助,例如通过在弹头表面涂上颜色等简单的战术就会影响光学探测器的探测性能等。
乌克兰空军如何使用风暴阴影巡航导弹
这张照片很大程度上证实了乌克兰空军使用苏-24作为这种巡航导弹的发射平台。苏-24是乌克兰空军仅有的具备发射“风暴阴影”巡航导弹的两种机型之一,我们过去曾将其列为可能的发射平台。
本文为美国“The Drive”网站“战争地带(War Zone)”专栏文章,作者Thomas Newdick,本人翻译并编辑给大家分享。
这张照片出现在乌克兰国防部长奥列克西·列兹尼科夫(Oleksii Reznikov)的一条推文中,内容涉及英国国防部长本·华莱士访问基辅。在乌克兰和英国国旗的背景下,两人握手的官方照片。另一张是英国国防部长竖起大拇指的照片。中央的这张苏-24照片似乎是本·华莱士赠送给奥列克西·列兹尼科夫的纪念品。
这张照片展示了一架苏-24战斗轰炸机,右侧机翼下固定挂架挂载了一枚“风暴阴影”巡航导弹。照片上还有本·华莱士的签名,上面则写着“致所有勇敢的少数人,他们为乌克兰的荣誉不惜一切代价”。
推特账号“乌克兰武器追踪报道(Ukraine Weapons Tracker)”发布了同一张照片的高清版,为我们展示了更多的细节。能够分辨出这是一架隶属第7战术航空旅的苏-24MR“剑术师E”侦察机,而不是苏-24M战斗轰炸机。
目前,尚不清楚这张照片是否是苏-24挂载“风暴阴影”巡航导弹执行任务时,拍摄的真实照片。但是,值得注意的是,如果真是这样的话,起落架似乎应该很快就收起,所以它也可能是低空飞越机场。另一方面,即使这张照片是经过数字处理,将“风暴阴影”PS到苏-24上,似乎也可以确认苏-24就是这种导弹的载机。苏-27战斗机也可以挂载这种导弹,但是,乌克兰空军在刚刚装备这种英国巡航导弹时,让两种战机携带它的可能性比较小。
随后,乌克兰空军推特官方账号发布了同样的合成图像,并配文“真是一幅画”。然后被迅速删除,这是当时的屏幕截图。
过去,我们曾经讨论过苏-24和苏-27成为“风暴阴影”巡航导弹载机的可能性。据英国国防部称,我们了解到该导弹已经用于实战,但是没有提供更多细节。与此同时,俄罗斯国防部称,乌克兰使用“风暴阴影”攻击卢甘斯克市,并已经有导弹残骸照片发布到网络平台上。
乌克兰空军的米格-29战斗机和苏-25攻击机都不适合挂载“风暴阴影”,因为每枚导弹重1300千克,而这两种战机通常挂载的最重武器不超过500千克。苏-25挂架最多能够挂载500千克的弹药,米格-29早期型也很少能挂载超过这个重量的武器。
外形更大的苏-24和苏-27拥有更大的有效载荷,尤其是苏-24,可以携带超过1500千克的武器。有趣的是,照片中的苏-24MR战斗机并不能携带进攻性武器,它没有“猎户座”火控雷达,以及与空地导弹配合使用的Kayra激光/电视系统。
然而,由于乌克兰对侦察任务需求较少,所以可以将苏-24MR侦察机改装成可以携带“风暴阴影”巡航导弹的攻击型。这将使苏-24M战斗轰炸机能够继续使用苏联时代生产的武器弹药执行攻击任务,例如照片中的Kh-25ML空地导弹。
也可能因为使用“风暴阴影”的紧迫性,苏-24M和苏-24MR都根据发射需要进行了改装。毕竟根据开源情报数据,俄乌武装冲突爆发以来,乌克兰至少损失了17架苏-24,其中绝大多数是战斗轰炸型。对此,乌克兰空军设法将一些此前封存的苏-24恢复到作战状态。
至于苏-24为发射“风暴阴影”巡航导弹需要进行什么样的修改,目前还不清楚。从理论上讲,这个过程应该不会太复杂。“风暴阴影”巡航导弹在发射前就已经用目标坐标进行了预编程,因此飞行员在发射之前不需要给导弹输入新的目标数据,这就意味着不需要相关的数据接口。这也意味着这种导弹可以由苏-24MR侦察机发射,因为发射过程中不需要使用火控雷达和激光/电视系统。
我们知道,乌克兰已经成功地在苏联时代生产的米格-29战斗机上发射西方国家提供的先进空射武器。特别是,米格-29和苏-27已经可以发射AGM-88高速反辐射导弹(HARM),并且至少在一种战机上可以发射增程型联合直接攻击弹药(JDAM-ER)。
据了解,“风暴阴影”是俄乌武装冲突爆发以来,提供给乌克兰的射程最远的防区外武器。过去,我们讨论过“风暴阴影”会给乌克兰带来的战术能力的提升。然而,乌克兰方面显然已经向西方国家保证过,不会使用它们打击俄罗斯境内的目标。英国表示,这些武器只能在乌克兰的主权领土内使用——尽管这不排除会对俄罗斯控制的乌克兰部分地区(包括克里米亚半岛)发动袭击。
“风暴阴影”巡航导弹的射程正好在乌克兰控制区与克里米亚半岛塞瓦斯托波尔之间的距离边缘,但是从最佳高度发射时,需要直接飞入俄罗斯的防空系统射程之内。具有战略意义的刻赤海峡大桥已经远远超出了“风暴阴影”的射程,如果乌克兰方面发动反攻,可能会改变这个现状。
但是,未来乌克兰空军可能会获得射程更远的武器。继法国承诺提供与“风暴阴影”非常相似的SCALP-EG巡航导弹之后,5月24日有消息称德国可能会向乌克兰提供“金牛座”KEPD 350巡航导弹。
我们期待有更多乌克兰使用“风暴阴影”巡航导弹的细节发布出来。
保存至今还能飞行的CR42战斗机。
应该说这两款是性能非常接近战机,欧洲“台风”在雷达、发动机和武器上略占优势。 欧洲“台风”战斗机广泛采用碳素纤维复合材料、玻璃纤维增强塑料、铝锂合金、钛合金和铝合金等材料制造,复合材料占全机比例约40%。采用一些隐形技术,包括低雷达横截面和被动传感器。前置鸭式三角翼构造空气动力学不稳定设计提供高度的敏捷性(特别在超音速)、低空气阻力和可提高升力,机翼使用无缝隙襟翼。飞行员通过每秒自动控制40次的飞行控制计算机和全权4余度主动控制数字式电传系统控制飞机去提供好的飞行控制特性。在不使用矢量发动机的情况下就具有优异的超机动性能,得益于良好的机身设计,不但维持高速优异操纵性、也具有很好的缠斗能力,特别是高速高过载缠斗。为增加航程,还具有空中加油能力。 欧洲“台风”战斗机安装一套CAPTOR ECR 90多模式X-波段脉冲多普勒雷达,是由欧洲雷达公司(Euroradar)合作发展,最大探测距离约150公里,据称是目前扫描最快的机载机械扫描雷达,具有极高的数据更新率。ECR 90多模式雷达有三个处理信道,第三个信道作为干扰机分级、干涉消隐和旁瓣无效。欧洲雷达公司(Euroradar)由英国宇航公司(BAE)、西班牙的英迪拉(Indra)系统公司、意大利FIAR公司和欧洲航宇防务(EADS)德国分部合作组成。EUROFIRST公司被动红外机载跟踪装置(PIRATE)安装在机身左舷风挡玻璃前面。EUROFIRST公司由意大利Galileo Avionica (FIAR) ,英国泰利斯光电子技术公司和西班牙Tecnobit公司合作组成。被动红外机载跟踪装置(PIRATE)能在3-5 和 8-11微米两种光谱带工作。当在空对空任务中使用,它如一个红外搜寻和跟踪系统 (IRST) 的职能,提供被动目标探测和跟踪;在空对地任务中,它履行多目标捕获和辨识,也提供导航和降落帮助功能,还提供一个易操纵的图像到头盔安装显示器上。 欧洲“台风”战斗机安装2台欧洲发动机公司(Eurojet)EJ200 双轴涡扇发动机(加力燃烧室),推重比9。最大的静推力2 x 60千牛顿 (13,490磅),加力推力2 x 90千牛顿 (20,250磅) 。采用数字控制和综合最佳状态监视系统,单晶涡扇叶片,一个收敛/扩散排气喷嘴。1998年开始设计矢量喷嘴,除了增加机动能力,主要用于能够更短距离起飞来实现上舰操作,目前EJ-200还在进行推力提升改进。 欧洲“台风”战斗机机内安装一门27毫米毛瑟机炮,用于武器携带共有13个挂点,每个机翼下各有四个,进气道正下方一个,进气道两边角落各两个半埋式挂点(装备超视距空空导弹)。一套武器控制系统(ACS)管理武器选择、发射和监控武器状况。欧洲战斗机能使用广泛多样性空对空和空对地武器。 1、机载武器的最大限度。具体如下: ·6 x AIM-120“先进中程空空导弹”(AMRAAM)或欧洲导弹设计局(MBDA)“流星”(Meteor)中程空对空导弹(现处在发展中) ·6 x AIM-9 “响尾蛇”(Sidewinder)或欧洲导弹设计局(MBDA)“先进近距空对空导弹”(ASRAAM)或德国博登湖机械技术公司(BGT)IRIS-T近距空对空导弹 ·4 x ALARM反辐射导弹 ·4 x “企鹅”(Penguin)空对地导弹或波音鱼叉(Harpon)反舰导弹 ·18 x “硫黄”(Brimstone)反坦克导弹 ·2 x欧洲导弹设计局(MBDA)“风暴阴影”(Storm Shadow)或LFK“金牛座”(Taurus)远距离投射武器 ·4 x Paveway GBU-10/16激光制导炸弹(使用指示吊舱) ·6 x BL 755集束炸弹 ·12 x 500 –2,000 磅常规炸弹 ·4 x布里斯多航空宇宙公司(Bristol Aerospace)CRV-7火箭吊舱 ·3 x外部燃料箱 2、机载武器的典型组态 欧洲“台风”战斗机武器最大负载是不能被同时携带的,根据作战需要选用不同的典型组态。具体如下: ·3 x AIM-120 “先进中程空空导弹”(AMRAAM),2 x AIM -9,1 x激光指示吊舱和 4 x GBU12 炸弹,3 x外部燃料箱 ·4 x AIM-120“先进中程空空导弹”(AMRAAM),2 x AIM -9,1 x油箱,6 x “企鹅”空对地导弹(ASM) ·4 x AIM-120“先进中程空空导弹”(AMRAAM),2 x AIM –9,1 x 1,000磅外部燃料箱,2 x 1,500磅外部燃料箱,4 x “企鹅” 空对地导弹(ASM) ·4 x AIM-120“先进中程空空导弹”(AMRAAM),2 x AIM -9,1 x外部燃料箱,5 x 450公斤炸弹 ·4 x AIM-120“先进中程空空导弹”(AMRAAM),2 x “先进近距空对空导弹”(ASRAAM),2 x 1,500磅外部燃料箱,1 x 1,000磅外部燃料箱,2 x ALARM反辐射导弹,2 x “风暴阴影”巡航导弹 ·4 x AIM-120“先进中程空空导弹”(AMRAAM),2 x “先进近距空对空导弹”(ASRAAM),1 x 1,000磅外部燃料箱,18 x “硫黄”反坦克导弹 ·4 x AIM-120“先进中程空空导弹”(AMRAAM), 2 x “先进近距空对空导弹”(ASRAAM),1 x 1,000油箱,6 x ALARM反辐射导弹 · 6 x AIM-120“先进中程空空导弹”(AMRAAM),2 x AIM-9 L ,2 x “铺路”(Paveways)激光制导炸弹,2 x 外挂油箱·4 x AIM-120“先进中程空空导弹”(AMRAAM),2 x “先进近距空对空导弹”(ASRAAM),2 x ALARM反辐射导弹,4 x“铺路”(Paveways)激光制导炸弹,在机身下面1个外挂油箱。 MBDA公司、EADS CASA公司、INMIZE公司和萨伯动力公司共同研制的“流星”(Meteor)中程空对空导弹,采用冲压/火箭复合推进,计算机自动调节推力,使用中段指令修正、末段主动方式导引,最大射程超过100公里。欧洲导弹设计局(MBDA)ASRAAM是欧洲新一代近距格斗空对空导弹,据称在英国空军鉴定中,该导弹的截获与跟踪距离是AIM-9导弹的2倍,在绝大多数情况下都是首发命中目标,增强了飞机的作战能力;另一种是由德国博登湖机械技术公司(BGT)研制的“虹膜”(IRIS)-T(红外成像系统-尾翼推进矢量控制)先进近距空对空导弹,采用推进矢量控制技术,IRIS-T导弹具有高度的灵活性、正负90度的寻的器离轴视角、发射后锁定目标能力、防对抗图像处理能力。 德国毛塞公司BK27“毛塞”机炮是一种转膛炮,其特点是采用闭合无链供弹系统,消除了抛弃弹壳和弹链时造成的危险,使现有系统的体积减小60%。 欧洲导弹设计局(MBDA)“硫黄”(Brimstone)反坦克导弹是在美国“海尔法”反坦克导弹基础上研制的,提高昼夜、全天候条件下的自主式攻击能力,并增大导弹射程。 欧洲导弹设计局(MBDA)“风暴阴影”(Storm Shadow)是世界上第一种隐形巡航导弹,该导弹系统飞行中段采用GPS全球定位加地形景像匹配制导,末段采用红外成像精确制导,因而具有极高的打击精度。同时,“风暴阴影”还大量采用了人工智能技术,可以自动识别目标,避免造成不必要的损失,因此也被许多军事专家称作目前世界上最完备的隐形导弹。 德国LFK和瑞典萨伯研制的“金牛座”(Taurus)导弹,射程350公里,可携带450千克弹头,具有末制导能力。 最高飞行速度:马赫 20+;低高度最大速度:1,390公里/小时(750节当量空速KEAS);最小速度:203公里/小时(110节当量空速);实用升限: 16,765米 (55,000英尺);计时到35,000英尺(10,600米) /马赫15:25 分钟;起飞距离:<700米;降落距离:<700米;作战半径:3,700公里(2,000海里); 中途拦截使用10 分钟巡逻>750海里 (1,390公里);在定点附近空中巡逻3个小时>100海里 (185公里);地面攻击,高-低-高飞行轨迹>750海里 (1,390公里);地面攻击,高-高飞行轨迹>350海里 (650公里) 欧洲“台风”战斗机据称具有F-22的90%空战能力以及远超过F-22的对地攻击能力。计划生产620架,其中英国订购232架、德国180架、意大利121架和西班牙87架。另外,奥地利已经决定购买24架“台风”战斗机。虽然希腊决定推迟购买60架“台风”战斗机,从性能来看,将会赢得更多的外销定单 “阵风”是法国达索飞机制造公司为满足法国海军和空军的需要,研制和发展的双发多用途超音速战斗机,该机可以在昼 夜、以及各种气象条件下完成从对地攻击到空中优势的各类任务。该机采用先进的“三角鸭翼近距耦合”气动布局和数字 式电子飞行控制系统,有很好的操纵性和稳定控制能力,大量应用碳纤维复合材料,装备有推重比为10一级的发动机,推重比 大、机动性和敏捷性好,可短距起降,具有超视距作战能力和一定的隐身能力等部分第四代战斗机的特点。该机共有4种型号: 双座空军型;阵风C,单座空军型;阵风D,单座空军隐身型;阵风M,单座海军型。该机除满足法国海军空军的需要外,还将 出口到其他国家。动力装置2台斯奈克玛M88-2加力涡扇发动机,单台静推力为 487千牛,加力推力729千牛。生产型飞机将装最大推力为87千牛的M88-3发动机。主要机载设备 汤姆逊-CSF/达索电子技术公司的 GIE RBE2下视/ 下射雷达,采用相控阵天线,具有地形跟踪能力,可同时跟踪 8个目标,并可评估危险程度,确定优先攻击目标。多功能通讯、数据链路系统,“西格玛” RL90惯性导航系统,GPS 以及先进的座舱显示设备等。武器:1 门30毫米盖特“德发”机炮。14个外部挂架,2 个在机身中线,2个在发动机进气道下,2个并排在后机身,6个在翼下,2个在翼尖,阵风M取消了机身中线前部的挂架。可以携带现有和在研的各种武器,执行截击任务时可携带 8枚“米卡”空空导弹和 2个翼下副油箱,执行对地攻击任务时可携带 16颗227 千克炸弹、2 枚“米卡”空空导弹和2 个1300升的副油箱,对海攻击时携带两枚“飞鱼”导弹或计划中的ANS掠海飞行导弹、 枚“米卡”导弹和4300 升的副油箱。重量及载荷: 基本空重,阵风D 9060千克,阵风M 9670千克。外挂载荷(最大)8000 千克,(正常)6000 千克。最大停机重量,原型机19500 千克,发展型21500 千克。性能数据: 最大平飞速度(高空)M2,(低空)1390千米/小时。进场速度213千米/小时,起飞滑跑距离(对空防御)400 米,(对地攻击)600米。作战半径(低空突防,带12 颗250千克炸弹,4枚“米卡”空空导弹以及总容量 4300升的3个副油箱)1093千米,(远程空中截击,带8枚“米卡”空空导弹以及总容量6600 升的4个副油箱, 12200米高度)1852千米。限制过载,+90/-36g
反导体系方面,美国是最出色的,其主要体现在两点,一是反导体系非常全面,二是已经开始实战化部署。美国搞的反导体系涵盖战略和战区两个层面,覆盖对洲际导弹、中程弹道导弹和短程弹道导弹的拦截,并且在弹道弹道的上升段、中间段和末段都有相应的拦截体系。并且推出了标准3+宙斯盾系统、萨德、爱国者-3、GBI拦截弹、ABL机载激光器等多种反导武器,除了ABL机载激光器外,其他均已开始实战化部署。
ABL机载激光武器,美军最初计划用它在导弹上升过程中将其摧毁,虽然试射实验取得成功,但是由于体积过于庞大,需要波音747这样的大型飞机才能装载,美军认为无法保证安全而放弃,但相关技术积累不排除在以后激光武器小型化取得突破后继续复活。
标准3导弹和宙斯盾系统,可以在对中短程弹道导弹上升段,中远程弹道导弹的末端进行拦截,他既可以部署在宙斯盾舰上进行海上反导,也可以搬到陆地上成为陆上宙斯盾。美国现在在东欧的罗马尼亚、波兰已经部署了陆上宙斯盾系统,可以对俄罗斯进行前置反导。
末端防御有两层,一是萨德反导系统,他是进行大气层外拦截,采用红外制导方式,在大气层外宇宙背景红外干扰很小,可以更远距离发现目标。
最后一道防线则是爱国者-3导弹系统,其采用雷达制导方式,进行大气层内反导,大气层内由于与空气的高速摩擦,红外制导难以产生效果,所以只能雷达制导。
而美国反导体系中,最有技术含量的则是GBI拦截弹,他是美国国家导弹防御系统的核心,可以对弹道导弹飞行中段进行拦截。其使用一枚金牛座中型固体运载火箭作为载体,对飞行中的核弹头实施碰撞式硬杀伤。
俄罗斯和我国处于美国之后的第二集团,而且各局特点。当年美国搞了个战略欺诈的“星球大战”计划,受其影响让前苏联成为最早花大力气研究反导的国家。冷战时期前苏联装备服役世界上第一款实战化反导系统,A-35 橡皮手套,这套系统到现在还在运行,俄罗斯并将其进行现代化改进,成为A-135。
A-135的反导模式属于冷战式反导模式,大气层外末端反导,但是使用战术核弹头作为战斗部,用核弹来反核弹,核爆炸可以同时摧毁数公里内来袭核弹头,因而不需要太高精度。
未来俄罗斯反导的核心则是即将服役的S-500反导系统,这是俄罗斯版萨德和标准3反导系统,主攻大气层外反导,他可以拦截射程8000公里内的来袭核弹头,并可以拦截类似三叉戟潜射弹道导弹这类目标。
而俄罗斯的末端大气层内反导主要依靠安泰-2500和S-400兼顾,特别是安泰-2500,其配有9M82M专用拦截弹,反导能力较强。
但是俄罗斯一直没有进行陆基中段反导研究,这一领域技术和成本太高,目前只有中国和美国开展这方面研究。我国目前已经进行了4次陆基中段反导试验,均取得成功。
我国在这方面研究取得巨大成就,但是距离美国GBI拦截弹这种实战化部署还有一定距离。
外界推测我国进行陆基中段反导是使用东风-21弹道导弹改装的发射载体,使用“动能”系列拦截弹头,这种拦截弹头不仅可以进行陆基中段反导,还可以反低轨道卫星。
而兔版萨德和兔版爱国者-3,则是红旗-29和红旗-19担任,他是使用红旗-9的发射系统发射,了解就行,不细说。
总之中俄是紧随美国之后的奋起直追者,俄罗斯是老而弥坚,中国是新军突起,随着两国在国家战略利益上趋于一致,以及美国在东欧和亚太部署反导系统的逼迫。两国加强在反导领域的交流合作,包括中俄联合反导计算机模拟演练等。
第三阵营则是以色列和欧洲,他们则是低层面反导研究,主要是针对战区级的中段程战术导弹。
以色列在反导方面成果相当不错,他的箭系列反导导弹,已经进行到第三代箭-3,主要目的在于拦截伊朗的中短程弹道导弹。这是类似于爱国者-3的末端高空反导系统。
此外以色列还有“大卫投石索”的反导导弹,可以用来拦截大口径远程火箭弹、短程战术导弹、巡航导弹等。
欧洲曾经在反导系统上雄心勃勃,但是昂贵的开发成本让其变成一场繁杂拖沓的谈判游戏。欧洲曾计划以紫菀-60导弹为核心打造高空反导拦截体系,但紫菀-60研究了十几年迟迟未投产,最后法国忍无可忍将紫菀-60部分技术改造紫菀-30,推出紫菀-30 block 2凑合用。
紫菀-30 block 2只能拦截射程在1000公里内的短程弹道导弹,而该系统价格太高
欢迎分享,转载请注明来源:表白网
评论列表(0条)