什么是数学建模大赛?

什么是数学建模大赛?,第1张

数学建模是一种数学的思考方法

是运用数学的语言和方法,通过抽象、简化建立能近似刻画并"解决"实际问题的一种强有力的数学手段。数学建模就是用数学语言描述实际现象的过程。

这里的实际现象既包涵具体的自然现象比如自由落体现象,也包含抽象的现象比如顾客对某种商品所取的价值倾向。

这里的描述不但包括外在形态、内在机制的描述,也包括预测、试验和解释实际现象等内容。

我们也可以这样直观地理解这个概念:数学建模是一个让纯粹数学家(指只研究数学,而不关心数学在实际中的应用的数学家)变成物理学家、生物学家、经济学家甚至心理学家等等的过程。数学模型一般是实际事物的一种数学简化。

社会学家认识一种现象叫做社会的散布,这是一个数据,一种科技的改革传布 , 或一个文化的时尚当中人口。 人口的成员能被区分为二个班级: 有数据的人们和人不。 在大小被知道的固定的人口中,合理的是承担人口的散布的比率成比例有数据的数字仍然乘数字接受它。 如果 X 指示在 N 人的人口中有数据的个体的数字,那么给社会的散布一个数学的模型藉着 dX/dt=kX(N-X), t 表现时间和 k 是一个积极的常数地方有。

1解决微分方程式上方和曲线图的尝试功能你解决。

2在数据是何时最快速地传布

3多少人们将会最后得到数据

用翻译软件弄得,自己解

问题的提出

数学建模的教学实践在我国己有十多年的探索了,新的国家课程标准和新的教材都将数学建模内容列入学生必修内容。在探究性学习的探索中,一些学校选择了数学建模做为突破口;在进行数学课题学习的教学实践中,数学建模是其中的一种重要形式。近年来,我校为配合上海市中学生数学知识应用竞赛,对数学建模教学进行了积极的探索,针对人为地将数学建模教学与曰常课堂教学相割裂、教师和学生对数学建模这种具有多样性、新奇性的学习形式存在的畏难心理等困难,我校在数学建模的教学中主要采用了以下循序渐近的三个不同层次的教学形式来克服以上的困难。

研究方法和过程

一、常规课堂教学中的数学建模教学

广义地说,一切数学概念、数学理论体系、数学公式、方程式和算法系统都可以称为数学模形。如“椭圆的方程及图象”就是一个数学模型,“用‘二分法’求方程的一个近似解”也是一个数学模型。针对学生在数学建模中不会对实际问题进行抽象、简化、假设变量和参数,形成明确的数学框架的困难,我们在常规的数学课堂教学中,有意识地选择合适的教学内容,模仿实际问题中建立数学模型的过程,来处理教材中常规的学习内容,从而为学生由实际问题来建立模型奠定基础。

譬如,对于二面角内容的教学,在学生原有生活经历中,有水坝面和水平面成适当的角的印象;有半开着的门与墙面形成角的印象,那么我们在让学生形成二面角的概念时,应当从学生已有的这些认识中,舍弃具体的水坝、门等对象,而抽象出“从一条直线出发的两个半平面所组成的图形叫做二面角”,在这里,半平面是相对于水坝拦水面、门等的具体对象而进行合理假设得到的理想化对象,而在进一步研究如何度量一个二面角的大小时,我们是让学生提出各种方案,然后通过讨论、比较各方案所定义的几何量对给定的二面角是不是不变量,同时又简洁表达了二面角中两个半平面闭合程度的大小。以上关于二面角的概念及其度量方法的教学过程,实际上就是建立数学模型并研究模型的过程。

这个教学案例说明,在常规的曰常课堂教学中,完全可以选定适当内容,创设出数学建模的教学情景来处理教学内容,从而为学生真正面对实际问题来建立模型、研究模型创造条件。

二、教师提供问题的数学建模教学

教师提供问题的数学建模,基本上同目前开展的大学生、中学生数学建模竞赛中需要完成的建模任务相同。这种形式的数学建模学生不需要自己选定实际问题研究,而是由教师选定适合于学生水平的实际问题呈现给学生,在教师的启发、引导下,学生小组通过讨论,自己完成模型选择和建立、计算、验证等过程,最后用小论文的形式呈现自己的研究成果,这种形式的数学建模学生已真正接触到实际问题,并经历建模的全过程。

经过了曰常课堂教学中的数学建模教学,学生对什么是数学建模已有了一定的认识,并已经历了由具体问题抽象出明确数学框架的锻练,因此,我们在这种形式的数学建模教学中,主要是加强以下几个方面的教学。

1.提供的实际问题必须难易适度,应当适合于学生的认知水平。对于较难的问题,我们往往给出必要提示,如启发学生通过提出合符常理的假设来将复杂的问题化为可以建模的问题;通过提示学生设定相关变量来达到使模型容易建立等。

教师可从选定的实际问题、模型假设、变量设定等方面来控制难度,其中模型假设和变量设定是直接影响到模型建立的关键因素,对此关键点教师没计适当的教学形式,是“教师给定问题型”建模教学的关键。

2在“教师给定问题型”的数学建模的实践中,学生将经历建模的全过程,其中在模型的求解这一环节,往往需要借助计算机选择一个合适的数学软件平合,通过数学实验来求解模型。我校近年来,对这一环节的教学比较重视,每年都对将参加上海市中学生数学建模夏令营的学生团队进行数学软件Matlab的使用辅导,通过使学生精通一种软件的使用,再介绍学生自己钻研其它几种数学软件的使用,从而为学生正确求出模型的解,铺平了道路。

3在近五年对学生的辅导过程中,我们感到以下一些问题可用来训练学生的数学建模能力,它们是:(1)路桥问题,(2)限定区域的驾驶问题,(3)交通信号灯管理问题,(4)球的内接多面体问题,(5)螺旋线问题,(6)最短路问题,(7)最小连接问题,(8)选址问题,(9)面包进货问题等。

4在“教师给定问题型”的数学建模实践中,学生的研究结果,必须会用论文进行表达,会表达自己的研究思路及结果,是一个学生综合素质的体现。由于数学建模论文的撰写有一定的格式要求,当然这种格式要求是为了更好地使作者展现自己的研究结果,也是对论文质量的保证。所以,我们在教学中对学生论文撰写的格式进行了专门的辅导,一般地说,中学生的数学建模论文格式,应当具有以下的形式。

(一) 论文摘要:做什么?用什么方法?借助什么工具?得出什么结论?为什么用这个工具?所得结果还有何推广应用?

关键词:用以体现论文主要特色的几个词汇。

(二) 问题的重述:用自己的语言将问题重述一遍,有自己的理解。

(三) 必要的假设或假定:(1)根据实际情况假定,要合乎常理,简化原始问题;(2)变量的定义和声明。

(四) 问题分析:变量之间会有什么关系?已知了什么?需在数学上解决什么?

(五) 模型:能够写成数学表达式的一定要写,可用几种不同的模型。

(六) 模型求解:用各种手段、包括借助计算器和计算机得出结论。

(七) 问题的讨论:模型及使用的工具的优缺点(准确性、局限性),所得结论和所用方法可否延伸到其他领域。

(八) 附录:引用的原始资料,编写的程序等。

从以上八个方面对学生进行辅导,提出要求,将会有效保证学生正确用论文表达自己的研究结果。

三,学生自选问题的数学建模教学。

有了前面两种形式的建模教学。学生具备了一定的建模水平后,就可进入学生自选问题的数学建模教学阶段了。这一阶段是要求学生依据自己已掌握的建模知识和具备的经验,自己选定一个实际问题,通过建立数学模型加以解决,最后以论文的形式反映自已的研究成果。这一阶段的数学建模教学实践,若开展的好,则广大学生在解决实际问题中所表现出的挑战困难的勇气和丰富的想象力都将是我们老师始料未及的。近年来我校在这种形式的建模教学实践中,主要是加强了如下三个方面的指导。

这个是方法

题名应简明、具体、确切,能概括论文的大概内容,有助于选定关键词,符合编制题录、索引和检索的有关原则。

简明扼要,提纲挈领。 命题讲究理论性和现实性,从一般性说特殊性。理论性是指基于某个理论。

1.摘要的规范

摘要是对论文的内容不加注释和评论的简短陈述,要求扼要地说明研究工作的目的、研究方法和最终结论等,重点是结论,是一篇具有独立性和完整性的短文,可以引用、推广、扩展。

2.撰写摘要注意事项

①不得简单重复题名中已有的信息,忌讳把引言中出现的内容写入摘要,不要照搬论文正文中的小标题(目录)或论文结论部分的文字,也不要诠释论文内容。

②尽量采用文字叙述,不要将文中的数据罗列在摘要中;文字要简洁,应排除本学科领域已成为常识的内容,应删除无意义的或不必要的字眼;内容不宜展开论证说明,不要列举例证,不介绍研究过程;

③摘要的内容必须完整,不能把论文中所阐述的主要内容(或观点)遗漏,应写成一篇可以独立使用的短文。

④摘要一般不分段,切忌以条列式书写法。陈述要客观,对研究过程、方法和成果等不宜作主观评价,也不宜与别人的研究作对比说明。)

1.关键词规范

关键词是反映论文主题概念的词或词组,通常以与正文不同的字体字号编排在摘要下方。一般每篇可选3~8个,多个关键词之间用分号分隔,按词条的外延(概念范围)层次从大到小排列。

关键词一般是名词性的词或词组,个别情况下也有动词性的词或词组。

应标注与中文关键词对应的英文关键词。编排上中文在前,外文在后。中文关键词前以“关键词:”或“[关键词]”作为标识;英文关键词前以“Key words”作为标识。

关键词应尽量从国家标准《汉语主题词表》中选用;未被词表收录的新学科、新技术中的重要术语和地区、人物、文献等名称,也可作为关键词标注。关键词应采用能覆盖论文主要内容的通用技术词条。

2.选择关键词的方法

关键词的一般选择方法是:由作者在完成论文写作后,从其题名、层次标题和正文(出现频率较高且比较关键的词)中选出来。)

还有:

(1)引言:引言又称前言、序言和导言,用在论文的开头。引言一般要概括地写出作者意图,说明选题的目的和意义, 并指出论文写作的范围。引言要短小精悍、紧扣主题。

(2)论文正文:正文是论文的主体,正文应包括论点、论据、论证过程和结论。主体部分包括以下内容:

a提出问题-论点;

b分析问题-论据和论证;

c解决问题-论证方法与步骤;

d结论。

线性规划(Linear programming,简称LP)是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法。研究线性约束条件下线性目标函数的极值问题的数学理论和方法。英文缩写LP。它是运筹学的一个重要分支,广泛应用于军事作战、经济分析、经营管理和工程技术等方面。为合理地利用有限的人力、物力、财力等资源作出的最优决策,提供科学的依据。

0-1规划是决策变量仅取值0或1的一类特殊的整数规划。在处理经济管理中某些规划问题时,若决策变量采用 0-1变量即逻辑变量,可把本来需要分别各种情况加以讨论的问题统一在一个问题中讨论。

蒙特卡罗法(Monte Carlo method)是以概率与统计的理论、方法为基础的一种计算方法,蒙特卡罗法将所需求解的问题同某个概率模型联系在一起,在电子计算机上进行随机模拟,以获得问题的近似解。因此,蒙特卡罗法又称随机模拟法或统计试验法。

在生活中经常遇到这样的问题,某单位需完成n项任务,恰好有n个人可承担这些任务。由于每人的专长不同,各人完成任务不同(或所费时间),效率也不同。于是产生应指派哪个人去完成哪项任务,使完成n项任务的总效率最高(或所需总时间最小)。这类问题称为指派问题或分派问题。

无约束最优化方法是求解无约束最优化问题的方法,有解析法和直接法两类。

解析法

解析法就是利用无约束最优化问题中目标函数 f(x) 的解析表达式和它的解析性质(如函数的一阶导数和二阶导数),给出一种求它的最优解 x 的方法,或一种求 x 的近似解的迭代方法。

直接法

直接法就是在求最优解 x的过程中,只用到函数的函数值,而不必利用函数的解析性质,直接法也是一种迭代法,迭代步骤简单,当目标函数 f(x) 的表达式十分复杂,或写不出具体表达式时,它就成了重要的方法。

可用来解决管路铺设、线路安装、厂区布局和设备更新等实际问题。基本内容是:若网络中的每条边都有一个数值(长度、成本、时间等),则找出两节点(通常是源节点和阱节点)之间总权和最小的路径就是最短路问题。 [1]

例如:要在n个城市之间铺设光缆,主要目标是要使这 n 个城市的任意两个之间都可以通信,但铺设光缆的费用很高,且各个城市之间铺设光缆的费用不同,因此另一个目标是要使铺设光缆的总费用最低。这就需要找到带权的最小生成树

管道网络中每条边的最大通过能力(容量)是有限的,实际流量不超过容量。

最大流问题(maximum flow problem),一种组合最优化问题,就是要讨论如何充分利用装置的能力,使得运输的流量最大,以取得最好的效果。求最大流的标号算法最早由福特和福克逊与与1956年提出,20世纪50年代福特(Ford)、(Fulkerson)建立的“网络流理论”,是网络应用的重要组成成分。

最小费用最大流问题是经济学和管理学中的一类典型问题。在一个网络中每段路径都有“容量”和“费用”两个限制的条件下,此类问题的研究试图寻找出:流量从A到B,如何选择路径、分配经过路径的流量,可以在流量最大的前提下,达到所用的费用最小的要求。如n辆卡车要运送物品,从A地到B地。由于每条路段都有不同的路费要缴纳,每条路能容纳的车的数量有限制,最小费用最大流问题指如何分配卡车的出发路径可以达到费用最低,物品又能全部送到。

旅行推销员问题(英语:Travelling salesman problem, TSP)是这样一个问题:给定一系列城市和每对城市之间的距离,求解访问每一座城市一次并回到起始城市的最短回路。它是组合优化中的一个NP困难问题,在运筹学和理论计算机科学中非常重要。

最早的旅行商问题的数学规划是由Dantzig(1959)等人提出,并且是在最优化领域中进行了深入研究。许多优化方法都用它作为一个测试基准。尽管问题在计算上很困难,但已经有了大量的启发式算法和精确方法来求解数量上万的实例,并且能将误差控制在1%内

计划评审法(Program Evaluation and Review Technique,简称PERT),是指利用网络分析制订计划以及对计划予以评价的技术。它能协调整个计划的各道工序,合理安排人力、物力、时间、资金,加速计划的完成。在现代计划的编制和分析手段上,PERT被广泛使用,是现代化管理的重要手段和方法。

关键路线法(Critical Path Method,CPM),又称关键线路法。一种计划管理方法。它是通过分析项目过程中哪个活动序列进度安排的总时差最少来预测项目工期的网络分析。

人口系统数学模型,用来描述人口系统中人的出生、死亡和迁移随时间变化的情况,以及它们之间定量关系的数学方程式或方程组,又称人口模型。

初值问题是指在自变量的某值给出适当个数的附加条件,用来确定微分方程的特解的这类问题。

如果在自变量的某值给出适当个数的附加条件,用来确定微分方程的特解,则这类问题称为初值问题。

边值问题是定解问题之一,只有边界条件的定解问题称为边值问题。二阶偏微分方程(组)一般有三种边值问题:第一边值问题又称狄利克雷问题,它的边界条件是给出未知函数本身在边界上的值;第二边值问题又称诺伊曼边值问题或斜微商问题,它的边界条件是给出未知函数关于区域边界的法向导数或非切向导数;第三边值问题又称鲁宾问题,它的边界条件是给出未知函数及其非切向导数的组合

目标规划是一种用来进行含有单目标和多目标的决策分析的数学规划方法。线性规划的一种特殊类型。它是在线性规划基础上发展起来的,多用来解决线性规划所解决不了的经济、军事等实际问题。它的基本原理、数学模型结构与线性规划相同,也使用线性规划的单纯形法作为计算的基础。所不同之处在于,它从试图使目标离规定值的偏差为最小入手解题,并将这种目标和为了代表与目标的偏差而引进的变量规定在表达式的约束条件之中。

时间序列(或称动态数列)是指将同一统计指标的数值按其发生的时间先后顺序排列而成的数列。时间序列分析的主要目的是根据已有的历史数据对未来进行预测。

支持向量机(Support Vector Machine,SVM)是Corinna Cortes和Vapnik等于1995年首先提出的,它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中。

在机器学习中,支持向量机(SVM,还支持矢量网络)是与相关的学习算法有关的监督学习模型,可以分析数据,识别模式,用于分类和回归分析。

聚类分析法是理想的多变量统计技术,主要有分层聚类法和迭代聚类法。 聚类分析也称群分析、点群分析,是研究分类的一种多元统计方法。

例如,我们可以根据各个银行网点的储蓄量、人力资源状况、营业面积、特色功能、网点级别、所处功能区域等因素情况,将网点分为几个等级,再比较各银行之间不同等级网点数量对比状况。

成分分析(Principal Component Analysis,PCA), 是一种统计方法。通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量叫主成分。

在实际课题中,为了全面分析问题,往往提出很多与此有关的变量(或因素),因为每个变量都在不同程度上反映这个课题的某些信息。

主成分分析首先是由K皮尔森(Karl Pearson)对非随机变量引入的,尔后H霍特林将此方法推广到随机向量的情形。信息的大小通常用离差平方和或方差来衡量。

因子分析是指研究从变量群中提取共性因子的统计技术。最早由英国心理学家CE斯皮尔曼提出。他发现学生的各科成绩之间存在着一定的相关性,一科成绩好的学生,往往其他各科成绩也比较好,从而推想是否存在某些潜在的共性因子,或称某些一般智力条件影响着学生的学习成绩。因子分析可在许多变量中找出隐藏的具有代表性的因子。将相同本质的变量归入一个因子,可减少变量的数目,还可检验变量间关系的假设。

判别分析又称“分辨法”,是在分类确定的条件下,根据某一研究对象的各种特征值判别其类型归属问题的一种多变量统计分析方法。

其基本原理是按照一定的判别准则,建立一个或多个判别函数,用研究对象的大量资料确定判别函数中的待定系数,并计算判别指标。据此即可确定某一样本属于何类。

当得到一个新的样品数据,要确定该样品属于已知类型中哪一类,这类问题属于判别分析问题。

对互协方差矩阵的一种理解,是利用综合变量对之间的相关关系来反映两组指标之间的整体相关性的多元统计分析方法。它的基本原理是:为了从总体上把握两组指标之间的相关关系,分别在两组变量中提取有代表性的两个综合变量U1和V1(分别为两个变量组中各变量的线性组合),利用这两个综合变量之间的相关关系来反映两组指标之间的整体相关性。

对应分析也称关联分析、R-Q型因子分析,是近年新发展起来的一种多元相依变量统计分析技术,通过分析由定性变量构成的交互汇总表来揭示变量间的联系。可以揭示同一变量的各个类别之间的差异,以及不同变量各个类别之间的对应关系。

对应分析主要应用在市场细分、产品定位、地质研究以及计算机工程等领域中。原因在于,它是一种视觉化的数据分析方法,它能够将几组看不出任何联系的数据,通过视觉上可以接受的定位图展现出来。

多维标度法是一种将多维空间的研究对象(样本或变量)简化到低维空间进行定位、分析和归类,同时又保留对象间原始关系的数据分析方法。

在市场营销调研中,多维标度法的用途十分广泛。被用于确定空间的级数(变量、指标),以反映消费者对不同品牌的认知,并且在由这些维构筑的空间中,标明某关注品牌和消费者心目中理想品牌的位置。

偏最小二乘法是一种数学优化技术,它通过最小化误差的平方和找到一组数据的最佳函数匹配。 用最简的方法求得一些绝对不可知的真值,而令误差平方之和为最小。 很多其他的优化问题也可通过最小化能量或最大化熵用最小二乘形式表达。

系统介绍了禁忌搜索算法、模拟退火算法、遗传算法、蚁群优化算法、人工神经网络算法和拉格朗日松弛算法等现代优化计算方法的模型与理论、应用技术和应用案例。

禁忌(Tabu Search)算法是一种元启发式(meta-heuristic)随机搜索算法,它从一个初始可行解出发,选择一系列的特定搜索方向(移动)作为试探,选择实现让特定的目标函数值变化最多的移动。为了避免陷入局部最优解,TS搜索中采用了一种灵活的“记忆”技术,对已经进行的优化过程进行记录和选择,指导下一步的搜索方向,这就是Tabu表的建立。

模拟退火算法来源于固体退火原理,是一种基于概率的算法,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。

传算法(Genetic Algorithm)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法。遗传算法是从代表问题可能潜在的解集的一个种群(population)开始的,而一个种群则由经过基因(gene)编码的一定数目的个体(individual)组成。每个个体实际上是染色体(chromosome)带有特征的实体。染色体作为遗传物质的主要载体,即多个基因的集合,其内部表现(即基因型)是某种基因组合,它决定了个体的形状的外部表现,如黑头发的特征是由染色体中控制这一特征的某种基因组合决定的。因此,在一开始需要实现从表现型到基因型的映射即编码工作。由于仿照基因编码的工作很复杂,我们往往进行简化,如二进制编码,初代种群产生之后,按照适者生存和优胜劣汰的原理,逐代(generation)演化产生出越来越好的近似解,在每一代,根据问题域中个体的适应度(fitness)大小选择(selection)个体,并借助于自然遗传学的遗传算子(genetic operators)进行组合交叉(crossover)和变异(mutation),产生出代表新的解集的种群。这个过程将导致种群像自然进化一样的后生代种群比前代更加适应于环境,末代种群中的最优个体经过解码(decoding),可以作为问题近似最优解。

The Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) is a multi-criteria decision analysis method, which was originally developed by Hwang and Yoon in 1981[1] with further developments by Yoon in 1987,[2] and Hwang, Lai and Liu in 1993[3] TOPSIS is based on the concept that the chosen alternative should have the shortest geometric distance from the positive ideal solution (PIS)[4] and the longest geometric distance from the negative ideal solution (NIS)[4]

TOPSIS是一种多准则决策分析方法,最初由Hwang和Yoon于1981年开发[1],1987年由Yoon进一步开发,[2]和Hwang, 1993年赖和刘。[3] TOPSIS是基于这样一个概念,即所选择的方案应该具有离正理想解(PIS)最短的几何距离[4]和距负理想解(NIS)最远的几何距离[4]。

模糊综合评价法是一种基于模糊数学的综合评价方法。该综合评价法根据模糊数学的隶属度理论把定性评价转化为定量评价,即用模糊数学对受到多种因素制约的事物或对象做出一个总体的评价。它具有结果清晰,系统性强的特点,能较好地解决模糊的、难以量化的问题,适合各种非确定性问题的解决。

数据包络分析方法(Data Envelopment Analysis,DEA)是运筹学、管理科学与数理经济学交叉研究的一个新领域。它是根据多项投入指标和多项产出指标,利用线性规划的方法,对具有可比性的同类型单位进行相对有效性评价的一种数量分析方法。DEA方法及其模型自1978年由美国著名运筹学家ACharnes和WWCooper提出以来,已广泛应用于不同行业及部门,并且在处理多指标投入和多指标产出方面,体现了其得天独厚的优势。

对于两个系统之间的因素,其随时间或不同对象而变化的关联性大小的量度,称为关联度。在系统发展过程中,若两个因素变化的趋势具有一致性,即同步变化程度较高,即可谓二者关联程度较高;反之,则较低。因此,灰色关联分析方法,是根据因素之间发展趋势的相似或相异程度,亦即“灰色关联度”,作为衡量因素间关联程度的一种方法。

主成分分析也称主分量分析,旨在利用降维的思想,把多指标转化为少数几个综合指标(即主成分),其中每个主成分都能够反映原始变量的大部分信息,且所含信息互不重复。这种方法在引进多方面变量的同时将复杂因素归结为几个主成分,使问题简单化,同时得到的结果更加科学有效的数据信息。在实际问题研究中,为了全面、系统地分析问题,我们必须考虑众多影响因素。这些涉及的因素一般称为指标,在多元统计分析中也称为变量。因为每个变量都在不同程度上反映了所研究问题的某些信息,并且指标之间彼此有一定的相关性,因而所得的统计数据反映的信息在一定程度上有重叠。主要方法有特征值分解,SVD,NMF等。

秩和比法(Rank-sum ratio,简称RSR法),是我国学者、原中国预防医学科学院田凤调教授于1988年提出的,集古典参数统计与近代非参数统计各自优点于一体的统计分析方法,它不仅适用于四格表资料的综合评价,也适用于行×列表资料的综合评价,同时也适用于计量资料和分类资料的综合评价。

灰色预测是就灰色系统所做的预测

灰色预测是一种对含有不确定因素的系统进行预测的方法。灰色预测通过鉴别系统因素之间发展趋势的相异程度,即进行关联分析,并对原始数据进行生成处理来寻找系统变动的规律,生成有较强规律性的数据序列,然后建立相应的微分方程模型,从而预测事物未来发展趋势的状况。其用等时距观测到的反应预测对象特征的一系列数量值构造灰色预测模型,预测未来某一时刻的特征量,或达到某一特征量的时间。

回归分析预测法,是在分析市场现象自变量和因变量之间相关关系的基础上,建立变量之间的回归方程,并将回归方程作为预测模型,根据自变量在预测期的数量变化来预测因变量关系大多表现为相关关系,因此,回归分析预测法是一种重要的市场预测方法,当我们在对市场现象未来发展状况和水平进行预测时,如果能将影响市场预测对象的主要因素找到,并且能够取得其数量资料,就可以采用回归分析预测法进行预测。它是一种具体的、行之有效的、实用价值很高的常用市场预测方法,常用于中短期预测。

包含未知函数的差分及自变数的方程。在求微分方程 的数值解时,常把其中的微分用相应的差分来近似,所导出的方程就是差分方程。通过解差分方程来求微分方程的近似解,是连续问题离散化 的一个例子。

马尔可夫预测法主要用于市场占有率的预测和销售期望利润的预测。就是一种预测事件发生的概率的方法。马尔科夫预测讲述了有关随机变量 、 随机函数与随机过程。

逻辑性的思维是指根据逻辑规则进行推理的过程;它先将信息化成概念,并用符号表示,然后,根据符号运算按串行模式进行逻辑推理;这一过程可以写成串行的指令,让计算机执行。然而,直观性的思维是将分布式存储的信息综合起来,结果是忽然间产生想法或解决问题的办法。这种思维方式的根本之点在于以下两点:1信息是通过神经元上的兴奋模式分布储在网络上;2信息处理是通过神经元之间同时相互作用的动态过程来完成的。

中文名 神经网络算法 外文名 Neural network algorithm

关于数学建模的话,一本比较经典的国内教材是姜启源出的那本《数学模型》,对于初学者可能有一定难度,不过确实比较经典,所以推荐。另外推荐的一本是国外的数学建模的教材,是机械工业出版社出的那本,已经是第四版了,这本书我看的虽然不是很多,不过身边的其他搞数模的同学认为比较好,所以推荐了。另外搞数模的话,一本matlab的相关书籍必不可少,基本数模的程序都由matlab完成了。

关于数学系的英文教材,我们的数学课基本都是双语教学,但是我个人不是数学系的,所以怕推荐的不是很正确,不过一般来说国外的教材都比较经典,个人比较过国内外的数学教材,觉得相比来说,国外的教材思路更加清晰,而国内的教材可能更适合考试,如果你希望对数学推导方面有较大了解,建议看国外教材,不过如果是仅仅参加各种考试,国内的教材很够用了。

1 数学几何基本知识

说得不完全对。

正方形可以说是长方形的特例,这是对的;但菱形不能算长方形的特例。因为长方形是四只角均为直角的四边形,而菱形是四条边均相等的四边形,它们都是四边形的特例,但菱形不能满足长方形四只角均为直角的特性,故而不能看成是长方形的特例。

回答你问题的补充: 正方形可以看成是菱形的特例。 我想再补充说明一点: 我们说形状A是另一个形状B的特例,则形状A必须具备形状B的所有特性,满足形状B的所有性质判定定理,且具有形状B所不具有的特性。

根据上述原理,我们能说等边三角形是等腰三角形的特例,正方形是长方形的特例,正方形是菱形的特例;反之,我们不能说菱形是长方形的特例或长方形是菱形的特例。 请再思考一下,祝学习进步。

2 简述几何建模过程 论文

简述几何建模过程有限元分析中不管是哪一类问题,都有着基本一致的求解过程,所以有限元分析过程易于计算机程序化,也易于入门。

使用MSCPatran进行有限元建模的基本过程如下所述。把商业软件作为工具创造性地应用于解决工程问题并不是一件简单的事情,需要一定的工程素养、力学知识和有限元理论基础。

1、几何建模。首先表示分析对象的空间几何位置关系。

几何建模不是简单的几何画图,而是要考虑到几何模型是用来生成有限元网格的,因此要根据将生成的有限元网格的需要进行几何建模。如果开始只是一味地根据图纸完全照搬地进行几何作图,这样生成的几何模型很可能在进行网格划分时遇到问题,这时候就需要返回来修改几何模型,造成时间上的浪费。

2、生成网格。有了几何模型,就可以用网格自动划分技术生成网格。

有时候可以没有几何模型,直接生成有限元网格。有时候可以生成部分几何模型,在此基础上生成分析需要的全部网格。

3、定义材料。工程结构都是由特定材料制成的,相同的材料在不同的载荷环境下也会表现出不同的力学性能,例如金属在载荷不大时产生的变形是可以恢复的,当载荷大到一定程度时就会产生不可恢复的永久变形。

我们建模时定义材料模型及其参数,要和实际结构的材料力学行为相一致。4、定义单元特性。

划分网格只是确定网格的几何拓扑关系,如一维、二维、三维单元,线性单元、高阶单元。定义单元特性,是要赋予单元以物理特性,使单元具有力学意义。

单元特性包括单元的材料属性和几何属性。单元几何属性,例如梁单元的横截面形状,板单元的厚度。

5、定义载荷和边界条件。结构都是在一定环境下工作的,要受到约束和载荷。

正确处理载荷是非常重要的。加载的方式和单元的类型有一定关系,例如三维体单元的节点只有三个平动自由度,节点上只能加力不能加力矩,如果有力矩存在就需要转换成适当的力偶(实际上力矩是个概念,客观世界里存在力偶而没有力矩)。

而板单元梁单元的节点既有平动自由度也有转动自由度,就可以直接加力和力矩。6、设定求解方法和求解参数,确定输出的计算结果。

这时候建模基本完成,需要根据求解问题类型,从数值计算的角度选择恰当的计算方法,要兼顾到计算精度、计算速度和计算稳定性。7、对计算结果进行处理和评价。

建模完成后,根据问题类型不同把数据提交给不同的求解器如MSCNatran、MSCMarc、MSCDytran等进行计算,计算结果由MSCPatran读入进行后处理。如果发现计算结果有问题,就需要查找原因,重新计算。

3 数学建模具体要学会什么基本的知识

大学生数学建模竞赛简介 1、数模竞赛的起源与历史 数模竞赛是由美国工业与应用数学学会在1985年发起的一项大学生竞赛活动,目的在于激励学生学习数学的积极性,提高学生建立数学模型和运用计算机技术解决实际问题的综合能力,鼓励广大学生踊跃参加课外科技活动,开拓知识面,培养创精神及合作意识,推动大学数学教学体系、教学内容和方法的改革。

我国大学生数学建模竞赛是由教育部高教司和中国工业与数学学会主办、面向全国高等院校的、每年一届的通讯竞赛。其宗旨是:创新意 识、团队精神、重在参与、公平竞争。

1992载在中国创办,自从创办以来,得到了教育部高教司和中国工业与应用数学协会的得力支持和关心,呈现出迅速的发展发展势头,就2003年来说,报名阶段须然受到“非典”影响,但是全国30个省(市、自治区)及香港的637所院校就有5406队参赛,在职业技术学院增加更快,参赛高校由2002年的1067所上升到了2003年的1410所。可以说:数学建模已经成为全国高校规模最大课外科技活动。

2、什么是数学建模 数学建模(Mathematical Modelling)是一种数学的思考方法,是“对现实的现象通过心智活动构造出能抓住其重要且有用的特征的表示,常常是形象化的或符号的表示。”从科学,工程,经济,管理等角度看数学建模就是用数学的语言和方法,通过抽象,简化建立能近似刻画并“解决”实际问题的一种强有力的数学工具。

顾名思义,modelling一词在英文中有“塑造艺术”的意思,从而可以理解从不同的侧面,角度去考察问题就会有不尽的数学模型,从而数学建模 的创造又带有一定的艺术的特点。而数学建模最重要的特点是要接受实践的检验,多次修改模型渐趋完善的过程。

3、竞赛的内容 竞赛题目一般来源于工程技术和管理科学等方面经过适当简化加工的实际问题,不要求参赛者预先掌握深入的专门知识,只需要学过普通高校的数学课程。题目有较大的灵活性供参赛者发挥其创造能力。

参赛者应根据题目要求,完成一篇包括模型假设、建立和求解、计算方法的设计和计算机实现、结果的分析和检验、模型的改进等方面的论文(即答卷)。竞赛评奖以假设的合理性、建模的创造性、结果的正确性和文字表述的清晰程度为主要标准。

4、竞赛的步骤 建模是一种十分复杂的创造性劳动,现实世界中的事物形形 ,五花八门,不可能用一些条条框 框规定出各种模型如何具体建立,这里只是大致归纳一下建模的一般步骤和原则: 1)模型准备:首先要了解问题的实际背景,明确题目的要求,收集各种必要的信息 2)模型假设:为了利用数学方法,通常要对问题做必要的、合理的假设,使问题的主要特征凸现出来,忽略问题的次要方面。 3)模型构成:根据所做的假设以及事物之间的联系,构造各种量之间的关系把问题化 4)模型求解:利用已知的数学方法来求解上一步所得到的数学问题,此时往往还要作出进一步的简化或假设。

为数学问题,注意要尽量采用简单的数学工具。 5)模型分析:对所得到的解答进行分析,特别要注意当数据变化时所得结果是否稳定。

6)模型检验:分析所得结果的实际意义,与实际情况进行比较,看是否符合实际,如果不够理想,应该修改、补充假设,或重新建模,不断完善。 7)模型应用:所建立的模型必须在实际应用中才能产生效益,在应用中不断改进和完善。

5、模型的分类 按模型的应用领域分类 生物数学模型 医学数学模型 地质数学模型 数量经济学模型 数学社会学模型 按是否考虑随机因素分类 确定性模型 随机性模型 按是否考虑模型的变化分类 静态模型 动态模型 按应用离散方法或连续方法 离散模型 连续模型 按建立模型的数学方法分类 几何模型 微分方程模型 图论模型 规划论模型 马氏链模型 按人们对事物发展过程的了解程度分类 白箱模型: 指那些内部规律比较清楚的模型。如力学、热学、电学以及相关的工程技术问题。

灰箱模型: 指那些内部规律尚不十分清楚,在建立和改善模型方面都还不同程度地有许多工作要做的问题。 如气象学、生态学经济学等领域的模型。

黑箱模型: 指一些其内部规律还很少为人们所知的现象。如生命科学、社会科学等方面的问题。

但由于因素众多、关系复杂,也可简化为灰箱模型来研究。 6、数学建模应用 今天,在国民经济和社会活动的以下诸多方面,数学建模都有着非常具体的应用。

分析与设计 例如描述药物浓度在人体内的变化规律以分析药物的疗效;建立跨音速空气流和激波的数学模型,用数值模拟设计新的飞机翼型。 预报与决策 生产过程中产品质量指标的预报、气象预报、人口预报、经济增长预报等等,都要有预报模型。

使经济效益最大的价格策略、使费用最少的设备维修方案,是决策模型的例子。 控制与优化 电力、化工生产过程的最优控制、零件设计中的参数优化,要以数学模型为前提。

建立大系统控制与优化的数学模型,是迫切需要和十分棘手的课题。 规划与管理 生产计划、资源配置、运输网络规划、水库优化调度,以及排队策略、物资管理等,都可以用运筹学模型解决。

4 简述几何建模过程 论文

简述几何建模过程

有限元分析中不管是哪一类问题,都有着基本一致的求解过程,所以有限元分析过程易于计算机程序化,也易于入门。使用MSCPatran进行有限元建模的基本过程如下所述。把商业软件作为工具创造性地应用于解决工程问题并不是一件简单的事情,需要一定的工程素养、力学知识和有限元理论基础。

1、几何建模。首先表示分析对象的空间几何位置关系。几何建模不是简单的几何画图,而是要考虑到几何模型是用来生成有限元网格的,因此要根据将生成的有限元网格的需要进行几何建模。如果开始只是一味地根据图纸完全照搬地进行几何作图,这样生成的几何模型很可能在进行网格划分时遇到问题,这时候就需要返回来修改几何模型,造成时间上的浪费。

2、生成网格。有了几何模型,就可以用网格自动划分技术生成网格。有时候可以没有几何模型,直接生成有限元网格。有时候可以生成部分几何模型,在此基础上生成分析需要的全部网格。

3、定义材料。工程结构都是由特定材料制成的,相同的材料在不同的载荷环境下也会表现出不同的力学性能,例如金属在载荷不大时产生的变形是可以恢复的,当载荷大到一定程度时就会产生不可恢复的永久变形。我们建模时定义材料模型及其参数,要和实际结构的材料力学行为相一致。

4、定义单元特性。划分网格只是确定网格的几何拓扑关系,如一维、二维、三维单元,线性单元、高阶单元。定义单元特性,是要赋予单元以物理特性,使单元具有力学意义。单元特性包括单元的材料属性和几何属性。单元几何属性,例如梁单元的横截面形状,板单元的厚度。

5、定义载荷和边界条件。结构都是在一定环境下工作的,要受到约束和载荷。正确处理载荷是非常重要的。加载的方式和单元的类型有一定关系,例如三维体单元的节点只有三个平动自由度,节点上只能加力不能加力矩,如果有力矩存在就需要转换成适当的力偶(实际上力矩是个概念,客观世界里存在力偶而没有力矩)。而板单元梁单元的节点既有平动自由度也有转动自由度,就可以直接加力和力矩。

6、设定求解方法和求解参数,确定输出的计算结果。这时候建模基本完成,需要根据求解问题类型,从数值计算的角度选择恰当的计算方法,要兼顾到计算精度、计算速度和计算稳定性。

7、对计算结果进行处理和评价。建模完成后,根据问题类型不同把数据提交给不同的求解器如MSCNatran、MSCMarc、MSCDytran等进行计算,计算结果由MSCPatran读入进行后处理。如果发现计算结果有问题,就需要查找原因,重新计算。

5 实体建模的具体相关知识

一、实体建模 的概念 1实体建模实体建模 的的必要性 必要性 2实体建模 实体建模 的概念 的概念 不仅描述了实体的全部几何信息,而且定义了所有点、线、面、体的拓扑信息。

实体建模的标志,是在计算机内部以实体描述客观事物。 利用这样的系统,一方面可以提供实体完整的信息,另一 方面、可以实现对可见边的判断,具有消隐的功能。

实体 建模是通过定义基本体素,利用体素的 运算或基本变 形操作实现的,其特点在于覆盖三维立体的表面与其实体 同时生成。由于实体建模能够定义三维物体的内部结构形 状。

因此,能完整地描述物体的所有几何信息,是当前普 遍采用的建模方法。 二、实体建模的方法 按照实体生成的方法不同,可分为体素法、扫描法 等几种 体素法是通过基本体素的 运算构造几何实体的建模方法 有些物体的表面形状较为复杂,难于通过定义基本体素加以描述,可以定义基体,利用基本的变形操 作实现物体的建模,这种构造实体的方法称为扫描 法。

扫描法又可分为平面轮廓扫描和整体扫描两种。 实体模型和线框或表面模型的区别:表面模型所 描述的面是孤立的面,没有方向,没有与其它的 面或体的关联;而实体模型提供了面和体之间的 拓扑关系。

而且记录了全部点、线、面、体的拓 扑信息,这是实体模型与线框或表面模型的根本 区别。详细 三、三维实体建模中的计算机内部表示 计算机内部表示三维实体模型的方法有很多,并且正向多重模式发 展。

常见的有边界表示法、构造实体几何法、混合表示法(即边界 表示法与构造实体几何法混合模式)、空间单元表示法等。 边界表示法简称B—Rep法,它的基本思想是,一个形体可以通过 包容它的面来表示,而每—个面又可以用构成此面的边描述边 通过点点通过三个坐标值来定义。

详细 按照实体、面、边、顶 点描述,在计算机内部存贮了这种网状的数据结构 1边界表示法 (Boundary Representation) 边界表示法的优点在于含有较多的关于面、边、点及其相互关系的 信息,这些信息对于工程图绘制及图形显示都是十分重要的,并且 易于同二维绘图软件衔接和同曲面建模软件联合应用。 边界表示法也有其缺点,由于它的核心是面因而对几何物体的整 体的描述能力相对较差,无法提供关于实体生成过程的信息。

例如一个三维物体最初是由哪些基本体素,经过哪种 运算拼合 而成的,也无法记录组成几何体的基本体素的原始数据。同时描述 所需信息量较大、并有信息冗余。

构造实体几何(Constructive Solid Geometry)表示法 原理:构造实体几何法简称CSG法 ,通过基本体 素及它们的 运算(如并、交、差)进行表示的, 即通过布尔运算生成二叉树结构进行表示。 CSC法与B-Rep法的主要区别在于存储的主要是 物体的生成过程,所以也称为过程模型。

详细 特点: 与边界表示法相比,CSG法构成实体几何模型相当简单,生成速 度快处理方便,无冗余信息,与机械装配的方式非常类似,而且 能够详细地记录构成实体的原始特征及参数,对于同一形体,CSG 法数据量只有B-Rep法的1/10。详细 CSG表示法的数据结构通常有两套数据结构一个是由基本体素以及 运算和几何变换所生成实体的二叉树的 数据结构,另一套是描述这些体素的位置及其体、面、边、点的信 3混合模式CSG的数据结构可以方便的转换成其它的数据结构,但 与此相反,其它数据结构转换成CSG数据结构却很困难, 甚至有些情况下是无法实现的。

不能存储最终实体的更详细的几何信息。必须经过运 算转化为边界表示法(B-REP)后,才能对实体的点、边、面等信息进行查询和编辑。

采用CSG法可以方便地实现对实体的局部修改。详细 原理:混合模式建立在边界表示法与构造立体几何法的基础之上,在同一系统中,将两者结台起来,共同表示 实体。

对CAD/CAM集成系统来说,单纯的几何模型不能满足要求, 往往需要在几何模型的基础上附加制造信息,构造产品模 型。人们在实践中总结出B—Rep法和CSG法各自的持点,试 图在系统中采用混合方法对物体进行描述。

详细 方法:以CSG法为系统外部模型,以B—Rep法为内部模型, CSG法适于做用户接口,方便用户输入数据,定义体素及确定 运算类型,而在计算机内部转化为B—Rep的数据模型,以 便存贮物体更详细的信息。这相当于在CSG树结构的节点上扩 充边界法的数据结构可以达到快速描述和操作模型的目的 特点:混合模式是在CSG基础上的逻辑扩展,起主导 作用的是CSG结构,结合B—Rep的优点可以完整地表达 物体的几何、拓扑信息,便于构造产品模型,使造型技 术大大前进了一步。

4空间单元表示法 空间单元表示法是通过一系列空间单元构成的图形来表示物 体的一种方法。这些单元(Cell)都是具有一定大小的立方 基本思想:是将一个三维实体有规律地分割为有限个单元,这些单元均为具有一定大小的立方体;在计算机内部通过定义各 个单元的位置是否填充来建立整个实体的数据结构。

空间单元表示法数据结构通常是四叉 四叉树常用作二维物体描述对三维实体需采用八叉树。详细 空间单元表示法 的特点 空间单元表示。

欢迎分享,转载请注明来源:表白网

原文地址:https://h5.hunlipic.com/biaobai/3773658.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2024-03-24
下一篇2024-03-24

发表评论

登录后才能评论

评论列表(0条)

    保存