用数学方法证明匀速圆周运动向心力公式

用数学方法证明匀速圆周运动向心力公式,第1张

可以用圆的方程来推导:

1,以其运动圆圆心作原点建系,其轨迹为

Rx=rcos(wt)

Ry=rsin(wt)

求导得其速度沿x,y轴分量与时间关系

Vx= -rwsin(wt)

Vy= rwcos(wt)

第二次求导得其加速度沿x,y轴分量与时间关系

ax=-rw²cos(wt)

ay=-rw²sin(wt)

则其加速度a=rw²

F=ma=mw²r=

2,用微积分

如图,当质点由A到B时,向心力F所产生的速度分量为V’

∮单位为rad(弧度), a’为平均加速度

V’=2vsin(05∮)=a’t

t=∮r/v

则a’=v²/r sin(05∮)/(05∮)

当 ∮→0 时,a’ →a

而此时sin(05∮)/(05∮)等于二者在0处的斜率比

据微积分求导公式,f(sin(05∮))=05cos(05∮)

在0处导得斜率为05,而后者斜率始终为05

故a=v ²/r

则F=ma=m v ²/r=…

看图吧,我都解在上了

v为速度矢量,设轴向单位矢量w0,a为加速度向量,

×代表矢量叉乘,d+物理量代表微分

dv=w0×vd(theta),

dv/dt=w0×vd(theta)/dt,

d(theta)/dt为角速度w幅值,可以移到式子前面

a=w×v

F=ma=mw×v

F的幅值为mwv=mv^2/r

1因为如果没有外力,物体总是保持匀速直线运动,也就是说,如果没有外力,物体就有沿着圆弧切线方向运动的趋势。

2如果地球是个规则的球体,吸引力是指向圆心的。其实我们都是生活在地球表面的,在南半球的人,极限的说,在南极的人,总体看就是大头朝下的。但是,由于地球自转的存在,重力并不完全是吸引力,地心引力是重力和向心力的合力。

3别忘了速度是矢量,就算圆周运动速度大小不变,依然有加速度,这里的加速度就表示的速度方向变化的快慢。很明显,A越大,V越大,因为转得越快,速度方向改变的越快。

一、力学

1、 胡克定律: F = kx (x为伸长量或压缩量;k为劲度系数,只与弹簧的原长、粗细和材料有关)

2、 重力: G = mg (g随离地面高度、纬度、地质结构而变化;重力约等于地面上物体受到的地球引力)

3 、求F 、 的合力:利用平行四边形定则。

注意:(1) 力的合成和分解都均遵从平行四边行法则。

(2) 两个力的合力范围: ú F1-F2 ú £ F£ F1 + F2

(3) 合力大小可以大于分力、也可以小于分力、也可以等于分力。

4、两个平衡条件:

(1) 共点力作用下物体的平衡条件:静止或匀速直线运动的物体,所受合外力为零。

F合=0 或 : Fx合=0 Fy合=0

推论:[1]非平行的三个力作用于物体而平衡,则这三个力一定共点。

[2]三个共点力作用于物体而平衡,其中任意两个力的合力与第三个力一定等值反向

(2 )有固定转动轴物体的平衡条件:力矩代数和为零。(只要求了解)

力矩:M=FL (L为力臂,是转动轴到力的作用线的垂直距离)

5、摩擦力的公式:

(1) 滑动摩擦力: f= m FN

说明 : ① FN为接触面间的弹力,可以大于G;也可以等于G;也可以小于G

② m为滑动摩擦因数,只与接触面材料和粗糙程度有关,与接触面积大小、接触面相对运动快慢以及正压力N无关。

(2) 静摩擦力:其大小与其他力有关, 由物体的平衡条件或牛顿第二定律求解,不与正压力成正比。

大小范围: O£ f静£ fm (fm为最大静摩擦力,与正压力有关)

说明:

a 、摩擦力可以与运动方向相同,也可以与运动方向相反。

b、摩擦力可以做正功,也可以做负功,还可以不做功。

c、摩擦力的方向与物体间相对运动的方向或相对运动趋势的方向相反。

d、静止的物体可以受滑动摩擦力的作用,运动的物体可以受静摩擦力的作用。

6、 浮力: F= rgV (注意单位)

7、 万有引力: F=G

(1) 适用条件:两质点间的引力(或可以看作质点,如两个均匀球体)。

(2) G为万有引力恒量,由卡文迪许用扭秤装置首先测量出。

(3) 在天体上的应用:(M——天体质量 ,m-卫星质量, R——天体半径 ,g——天体表面重力加速度,h-卫星到天体表面的高度)

a 、万有引力=向心力

G

b、在地球表面附近,重力=万有引力

mg = G g = G

c、 第一宇宙速度

mg = m V=

8、 库仑力:F=K (适用条件:真空中,两点电荷之间的作用力)

9、 电场力:F=Eq (F 与电场强度的方向可以相同,也可以相反)

10、磁场力:

(1) 洛仑兹力:磁场对运动电荷的作用力。

公式:f=qVB (B^V) 方向——左手定则

(2) 安培力 : 磁场对电流的作用力。

公式:F= BIL (B^I) 方向——左手定则

11、牛顿第二定律: F合 = ma 或者 ?Fx = m ax ?Fy = m ay

适用范围:宏观、低速物体

理解:(1)矢量性 (2)瞬时性 (3)独立性

(4) 同体性 (5)同系性 (6)同单位制

12、匀变速直线运动:

基本规律: Vt = V0 + a t S = vo t + a t2

几个重要推论:

(1) Vt2 - V02 = 2as (匀加速直线运动:a为正值 匀减速直线运动:a为正值)

(2) A B段中间时刻的瞬时速度:

Vt/ 2 = = (3) AB段位移中点的即时速度:

Vs/2 =

匀速:Vt/2 =Vs/2 ; 匀加速或匀减速直线运动:Vt/2 <Vs/2

(4) 初速为零的匀加速直线运动,在1s 、2s、3s……ns内的位移之比为12:22:32……n2; 在第1s 内、第 2s内、第3s内……第ns内的位移之比为1:3:5…… (2n-1); 在第1米内、第2米内、第3米内……第n米内的时间之比为1: : ……(

(5) 初速无论是否为零,匀变速直线运动的质点,在连续相邻的相等的时间间隔内的位移之差为一常数:Ds = aT2 (a——匀变速直线运动的加速度 T——每个时间间隔的时间)

13、 竖直上抛运动: 上升过程是匀减速直线运动,下落过程是匀加速直线运动。全过程是初速度为VO、加速度为-g的匀减速直线运动。

(1) 上升最大高度: H =

(2) 上升的时间: t=

(3) 上升、下落经过同一位置时的加速度相同,而速度等值反向

(4) 上升、下落经过同一段位移的时间相等。 从抛出到落回原位置的时间:t =

(5)适用全过程的公式: S = Vo t —— g t2 Vt = Vo-g t

Vt2 -Vo2 = - 2 gS ( S、Vt的正、负号的理解)

14、匀速圆周运动公式

线速度: V= Rw =2 f R=

角速度:w=

向心加速度:a = 2 f2 R

向心力: F= ma = m 2 R= m m4 n2 R

注意:(1)匀速圆周运动的物体的向心力就是物体所受的合外力,总是指向圆心。

(2)卫星绕地球、行星绕太阳作匀速圆周运动的向心力由万有引力提供。

(3) 氢原子核外电子绕原子核作匀速圆周运动的向心力由原子核对核外电子的库仑力提供

15、平抛运动公式:匀速直线运动和初速度为零的匀加速直线运动的合运动

水平分运动: 水平位移: x= vo t 水平分速度:vx = vo

竖直分运动: 竖直位移: y = g t2 竖直分速度:vy= g t

tgq = Vy = Votgq Vo =Vyctgq

V = Vo = Vcosq Vy = Vsinq

在Vo、Vy、V、X、y、t、q七个物理量中,如果 已知其中任意两个,可根据以上公式求出其它五个物理量。

16、 动量和冲量: 动量: P = mV 冲量:I = F t

(要注意矢量性)

17 、动量定理: 物体所受合外力的冲量等于它的动量的变化。

公式: F合t = mv' - mv (解题时受力分析和正方向的规定是关键)

18、动量守恒定律:相互作用的物体系统,如果不受外力,或它们所受的外力之和为零,它们的总动量保持不变。 (研究对象:相互作用的两个物体或多个物体)

公式:m1v1 + m2v2 = m1 v1'+ m2v2'或Dp1 =- Dp2 或Dp1 +Dp2=O

适用条件:

(1)系统不受外力作用。 (2)系统受外力作用,但合外力为零。

(3)系统受外力作用,合外力也不为零,但合外力远小于物体间的相互作用力。

(4)系统在某一个方向的合外力为零,在这个方向的动量守恒。

19、 功 : W = Fs cosq (适用于恒力的功的计算)

(1) 理解正功、零功、负功

(2) 功是能量转化的量度

重力的功——量度——重力势能的变化

电场力的功——量度——电势能的变化

分子力的功——量度——分子势能的变化

合外力的功——量度——动能的变化

20、 动能和势能: 动能: Ek =

重力势能:Ep = mgh (与零势能面的选择有关)

21、动能定理:外力所做的总功等于物体动能的变化(增量)。

公式: W合= DEk = Ek2 - Ek1 = 22、机械能守恒定律:机械能 = 动能+重力势能+弹性势能

条件:系统只有内部的重力或弹力做功。

公式: mgh1 + 或者 DEp减 = DEk增

23、能量守恒(做功与能量转化的关系):有相互摩擦力的系统,减少的机械能等于摩擦力所做的功。

DE = Q = f S相

24、功率: P = (在t时间内力对物体做功的平均功率)

P = FV (F为牵引力,不是合外力;V为即时速度时,P为即时功率;V为平均速度时,P为平均功率; P一定时,F与V成正比)

25、 简谐振动: 回复力: F = -KX 加速度:a = -

单摆周期公式: T= 2 (与摆球质量、振幅无关)

(了解)弹簧振子周期公式:T= 2 (与振子质量、弹簧劲度系数有关,与振幅无关)

26、 波长、波速、频率的关系: V = =l f (适用于一切波)

二、热学

1、热力学第一定律:DU = Q + W

符号法则:外界对物体做功,W为“+”。物体对外做功,W为“-”;

物体从外界吸热,Q为“+”;物体对外界放热,Q为“-”。

物体内能增量DU是取“+”;物体内能减少,DU取“-”。

2 、热力学第二定律:

表述一:不可能使热量由低温物体传递到高温物体,而不引起其他变化。

表述二:不可能从单一的热源吸收热量并把它全部用来对外做功,而不引起其他变化。

表述三:第二类永动机是不可能制成的。

3、理想气体状态方程:

(1)适用条件:一定质量的理想气体,三个状态参量同时发生变化。

(2) 公式: 恒量

4、热力学温度:T = t + 273 单位:开(K)

(绝对零度是低温的极限,不可能达到)

三、电磁学

(一)直流电路

1、电流的定义: I = (微观表示: I=nesv,n为单位体积内的电荷数)

2、电阻定律: R=ρ (电阻率ρ只与导体材料性质和温度有关,与导体横截面积和长度无关)

3、电阻串联、并联:

串联:R=R1+R2+R3 +……+Rn

并联: 两个电阻并联: R=

4、欧姆定律: (1)部分电路欧姆定律: U=IR

(2)闭合电路欧姆定律:I =

路端电压: U = e -I r= IR

电源输出功率: = Iε-I r =

电源热功率:

电源效率: = =RR+r

(3)电功和电功率:

电功:W=IUt 电热:Q= 电功率 :P=IU

对于纯电阻电路: W=IUt= P=IU =

对于非纯电阻电路: W=Iut > P=IU>

(4)电池组的串联:每节电池电动势为 `内阻为 ,n节电池串联时:

电动势:ε=n 内阻:r=n

(二)电场

1、电场的力的性质:

电场强度:(定义式) E = (q 为试探电荷,场强的大小与q无关)

点电荷电场的场强: E = (注意场强的矢量性)

2、电场的能的性质:

电势差: U = (或 W = U q )

UAB = φA - φB

电场力做功与电势能变化的关系:DU = - W

3、匀强电场中场强跟电势差的关系: E = (d 为沿场强方向的距离)

4、带电粒子在电场中的运动:

① 加速: Uq = mv2

②偏转:运动分解: x= vo t ; vx = vo ; y = a t2 ; vy= a t

a =

(三)磁场

1、 几种典型的磁场:通电直导线、通电螺线管、环形电流、地磁场的磁场分布。

2、 磁场对通电导线的作用(安培力):F = BIL (要求 B⊥I, 力的方向由左手定则判定;若B‖I,则力的大小为零)

3、 磁场对运动电荷的作用(洛仑兹力): F = qvB (要求v⊥B, 力的方向也是由左手定则判定,但四指必须指向正电荷的运动方向;若B‖v,则力的大小为零)

4、 带电粒子在磁场中运动:当带电粒子垂直射入匀强磁场时,洛仑兹力提供向心力,带电粒子做匀速圆周运动。即: qvB =

可得: r = , T = (确定圆心和半径是关键)

(四)电磁感应

1、感应电流的方向判定:①导体切割磁感应线:右手定则;②磁通量发生变化:楞次定律。

2、感应电动势的大小:① E = BLV (要求L垂直于B、V,否则要分解到垂直的方向上 ) ② E = (①式常用于计算瞬时值,②式常用于计算平均值)

(五)交变电流

1、交变电流的产生:线圈在磁场中匀速转动,若线圈从中性面(线圈平面与磁场方向垂直)开始转动,其感应电动势瞬时值为:e = Em sinωt ,其中 感应电动势最大值:Em = nBSω

2 、正弦式交流的有效值:E = ;U = ; I =

(有效值用于计算电流做功,导体产生的热量等;而计算通过导体的电荷量要用交流的平均值)

3 、电感和电容对交流的影响:

① 电感:通直流,阻交流;通低频,阻高频

② 电容:通交流,隔直流;通高频,阻低频

③ 电阻:交、直流都能通过,且都有阻碍

4、变压器原理(理想变压器):

①电压: ② 功率:P1 = P2

③ 电流:如果只有一个副线圈 : ;

若有多个副线圈:n1I1= n2I2 + n3I3

5、 电磁振荡(LC回路)的周期:T = 2π

四、光学

1、光的折射定律:n =

介质的折射率:n =

2、全反射的条件:①光由光密介质射入光疏介质;②入射角大于或等于临界角。 临界角C: sin C =

3、双缝干涉的规律:

①路程差ΔS = (n=0,1,2,3——) 明条纹

(2n+1) (n=0,1,2,3——) 暗条纹

② 相邻的两条明条纹(或暗条纹)间的距离:ΔX =

4、光子的能量: E = hυ = h ( 其中h 为普朗克常量,等于663×10-34Js, υ为光的频率) (光子的能量也可写成: E = m c2 )

(爱因斯坦)光电效应方程: Ek = hυ - W (其中Ek为光电子的最大初动能,W为金属的逸出功,与金属的种类有关)

5、物质波的波长: = (其中h 为普朗克常量,p 为物体的动量)

五、原子和原子核

1、 氢原子的能级结构。

原子在两个能级间跃迁时发射(或吸收光子):

hυ = E m - E n

2、 核能:核反应过程中放出的能量。

质能方程: E = m C2 核反应释放核能:ΔE = Δm C2

复习建议:

1、高中物理的主干知识为力学和电磁学,两部分内容各占高考的38℅,这些内容主要出现在计算题和实验题中。

力学的重点是:①力与物体运动的关系;②万有引力定律在天文学上的应用;③动量守恒和能量守恒定律的应用;④振动和波等等。⑤⑥

解决力学问题首要任务是明确研究的对象和过程,分析物理情景,建立正确的模型。解题常有三种途径:①如果是匀变速过程,通常可以利用运动学公式和牛顿定律来求解;②如果涉及力与时间问题,通常可以用动量的观点来求解,代表规律是动量定理和动量守恒定律;③如果涉及力与位移问题,通常可以用能量的观点来求解,代表规律是动能定理和机械能守恒定律(或能量守恒定律)。后两种方法由于只要考虑初、末状态,尤其适用过程复杂的变加速运动,但要注意两大守恒定律都是有条件的。

电磁学的重点是:①电场的性质;②电路的分析、设计与计算;③带电粒子在电场、磁场中的运动;④电磁感应现象中的力的问题、能量问题等等。

2、热学、光学、原子和原子核,这三部分内容在高考中各占约8℅,由于高考要求知识覆盖面广,而这些内容的分数相对较少,所以多以选择、实验的形式出现。但绝对不能认为这部分内容分数少而不重视,正因为内容少、规律少,这部分的得分率应该是很高的。

质点沿圆周运动,如果在相等的时间里通过的圆弧长度都相等,这种运动就叫做“匀速圆周运动”,亦称“匀速率圆周运动”。物体作圆周运动的条件:①具有初速度;②受到一个大小不变、方向与速度垂直因而是指向圆心的力(向心力)。物体作匀速圆周运动时,速度的大小虽然不变,但速度的方向时刻改变,所以匀速圆周运动是变速运动。又由于作匀速圆周运动时,它的向心加速度的大小不变,但方向时刻改变,故匀速圆周运动是变速运动。“匀速圆周运动”一词中的“匀速”仅是速率不变的意思。 做匀速圆周运动的物体仍然具有加速度,而且加速度不断改变,因为其加速度方向在不断改变

特别要注意的是物体做匀速圆周运动由合外力提供向心力,这也是解决匀速圆周运动问题的一个突破口。

高考物理必考知识点公式如下:

1电压瞬时值e=Emsinωt 电流瞬时值i=Imsinωt;(ω=2πf)。

2电动势峰值Em=nBSω=2BLv 电流峰值(纯电阻电路中)Im=Em/R总。

3正(余)弦式交变电流有效值:E=Em/(2)1/2;U=Um/(2)1/2 ;I=Im/(2)1/2。

4理想变压器原副线圈中的电压与电流及功率关系。

U1/U2=n1/n2; I1/I2=n2/n2; P入=P出。

5在远距离输电中,采用高压输送电能可以减少电能在输电线上的损失损′=(P/U)2R;(P损′:输电线上损失的功率,P:输送电能的总功率,U:输送电压,R:输电线电阻)〔见第二册P198〕。

6公式1、2、3、4中物理量及单位:ω:角频率(rad/s);t:时间(s);n:线圈匝数;B:磁感强度(T);S:线圈的面积(m2);U输出)电压(V);I:电流强度(A);P:功率(W)。

高考物理解题技巧如下:

1、充分理解题意:在解题前,需要仔细阅读题目,并明确题目要求和问题所涉及的物理知识点。理解题目可以帮助考生正确解读题目,避免漏看题目细节和误解题目意思。

2、画图辅助理解:在解决一些需要空间想象的题目时,画图可以辅助理解问题,弥补我们对复杂的空间模型或物理问题的认知。画图可以使思路更加清晰,并帮助我们更好地理解物理知识和解题方法。

3、善于利用公式和定律:物理学科是一门公式和定律丰富的学科,考生需要熟练掌握各种公式和定律,并能够灵活运用这些知识点解决问题。建议考生在考前背诵并熟练掌握重要的公式和定律。

4、利用近似处理:在高考物理中,有些问题需要进行快速的近似处理,避免使用过于复杂或精确的方法。熟悉并理解近似处理的方法可以让考生更加轻松和高效地解决问题。

5、每道题要有多种思路:考生要具备多种思路解决同一道题的能力。这也是考高分的关键之一。当一种解法无法得出正确结果时,立即换一种解法,避免耽误太多时间,提高解题效率。

6、对不确定的答案进行推演:在遇到答案不确定的情况下,考生可以借助推演的方式,根据定律和物理规律得出正确答案。例如,对于有些数值型问题,以科学计数法的形式估算答案的量级,这样可以有效帮助考生筛选出正确答案或者发现答案计算有误的情况。

7、利用单位简化计算:高考物理中,单位的分类、转换和计算非常重要。对于一些复杂包含单位的题目,将单位进行简化或单位制进行换算可以大大简化计算,减少失误。

8、拓宽物理实验和观察经验:物理实验和观察是掌握物理知识的重要途径。建议考生多参加物理实验和观察,培养对实际物理现象的理解和认知。通过实验和观察,可以加深对物理概念和原理的理解,从而更好地应用到高考物理题目中。

9、确定问题策略:在高考物理中,策略的选择尤为重要。例如,对于一些需要通过测量来获取物理量的题目,要选择使用合适的测量设备和方便的测量方法。还要注意实验误差的估计和控制。在解决热运动问题时,可以利用统计的思路,应用概率和统计的方法解决问题。

10、提高数字运算技巧:高考物理多是数值计算,加减乘除、化简分式、发掘某些常数特殊的表达式都需要熟练掌握。数量级的转换、小数的运算等都需考生熟练掌握。

物理学科有一定的难度,考生需要通过多种方式和方法提高解题能力。建议考生平时加强物理知识的学习和理解,注重实际应用,多做练习和真题,以提高解题技巧和能力。物理学科给人的感觉是既抽象又实际,并且需要一定的数学基础。只有在平日里打好物理的基础,同时熟悉掌握以上高考物理解题技巧,才能在高考中做到应对自如,取得高分。

高考物理解题注意事项:

1、注意题目类型和考点:不同类型的题目考察的内容和考点可能不同。考生在答题前应先判断题目类型和涉及到的考点,对于重中之重的考点要特别重视。

2、仔细读题、画图和注明符号:解题前必须认真阅读题目,了解题目要求和所涉及的物理知识点。解题时可以结合画图和注明符号,既能帮助理解题目,也能避免因符号不明确或遗漏产生错误。

3、善于利用公式和定律:考生需要熟记并掌握各种公式和定律,遇到问题时要尽可能把问题转化为公式的形式,从而更容易解决问题。

4、更加注重计算过程和单位的掌握:计算过程和单位的掌握对于得出正确结论非常重要,因此在解题时,要重视计算过程的准确性和单位的统一转换。

5、防止粗心大意和反悔现象:高考物理解题就不容许粗心大意。为了避免反悔现象,考生需要在解题前仔细思考,构建行之有效的解题计划和思路,做到耐心认真,避免大意失荆州。

高考物理解题需要考生掌握科学的解题方法和技巧,力争做到准确、快捷、规范。同时,考生还应该注重平时的学习,加强物理知识的积累和巩固,提高解题的能力和水平。在解题的同时,还需要注重学习方法和策略,有利于提高解题效率和准确率,从而在高考中取得好成绩。

圆轨道周期计算公式T(周期)=2πr/v=2π/ω=1/n。

相关信息

1、圆周运动的周期公式T(周期)=2πr/v=2π/ω=1/n。质点沿圆周运动,如果在任意相等的时间里通过的圆弧长度都相等,这种运动就叫做匀速圆周运动。匀速圆周运动是圆周运动中,最常见和最简单的运动(因为速度是矢量,所以匀速圆周运动实际上是指匀速率圆周运动)。

2、椭圆轨道有两个焦点,中心的星体位于其中一个焦点之上,比如地球绕太阳的轨道就是椭圆形的,而太阳位于椭圆的一个焦点上。

3、椭圆轨道有著名的开普勒三定律,所有行星围绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。 行星的向径在相等的时间内扫过相等的面积。 所有行星轨道半长轴的三次方跟公转周期的二次方的比值都相等。

4、开普勒定律是椭圆定律所有行星绕太阳的轨道都是椭圆,太阳在椭圆的一个焦点上。面积定律行星和太阳的连线在相等的时间间隔内扫过相等的面积。

欢迎分享,转载请注明来源:表白网

原文地址:https://h5.hunlipic.com/biaobai/3143778.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2024-02-08
下一篇2024-02-08

发表评论

登录后才能评论

评论列表(0条)

    保存