傅立叶变换怎么用?

傅立叶变换怎么用?,第1张

sinwt的傅里叶变换公式是cosωbai0t=[exp(jω0t)+exp(-jω0t)]/2。

计算离散傅里叶变换的快速方法,有按时间抽取的FFT算法和按频率抽取的FFT算法。前者是将时域信号序列按偶奇分排,后者是将频域信号序列按偶奇分排。

它们都借助于的两个特点:一是周期性;二是对称性,这里符号代表其共轭。这样,便可以把离散傅里叶变换的计算分成若干步进行,计算效率大为提高。

变换提出

傅里叶是一位法国数学家和物理学家的名字,英语原名是Jean Baptiste Joseph Fourier(1768-1830), Fourier对热传递很感兴趣,于1807年在法国科学学会上发表了一篇论文,运用正弦曲线来描述温度分布,论文里有个在当时具有争议性的决断:任何连续周期信号可以由一组适当的正弦曲线组合而成。

当时审查这个论文的人,其中有两位是历史上著名的数学家拉格朗日(Joseph Louis Lagrange, 1736-1813)和拉普拉斯(Pierre Simon de Laplace, 1749-1827),当拉普拉斯和其它审查者投票通过并要发表这个论文时,拉格朗日坚决反对,在他此后生命的六年中,拉格朗日坚持认为傅里叶的方法无法表示带有棱角的信号,如在方波中出现非连续变化斜率。

法国科学学会屈服于拉格朗日的威望,拒绝了傅里叶的工作,幸运的是,傅里叶还有其它事情可忙,他参加了政治运动,随拿破仑远征埃及,法国大革命后因会被推上断头台而一直在逃避。直到拉格朗日死后15年这个论文才被发表出来。

傅里叶变换公式

公式描述:公式中F(ω)为f(t)的像函数,f(t)为F(ω)的像原函数。

傅立叶变换在不同的研究领域,傅立叶变换具有多种不同的变体形式,如连续傅立叶变换和离散傅立叶变换。最初傅立叶分析是作为热过程的解析分析的工具被提出的。

简介

因FFT是为时序电路而设计的,因此,控制信号要包括时序的控制信号及存储器的读写地址,并产生各种辅助的指示信号。同时在计算模块的内部,为保证高速,所有的乘法器都须始终保持较高的利用率。这意味着在每一个时钟来临时都要向这些单元输入新的操作数,而这一切都需要控制信号的紧密配合。

为了实现FFT的流形运算,在运算的同时,存储器也要接收数据。这可以采用乒乓RAM的方法来完成。这种方式决定了实现FFT运算的最大时间。对于4k操作,其接收时间为4096个数据周期,这样FFT的最大运算时间就是4096个数据周期。

另外,由于输入数据是以一定的时钟为周期依次输入的,故在进行内部运算时,可以用较高的内部时钟进行运算,然后再存入RAM依次输出。

连续傅里叶变换 一般情况下,若“傅立叶变换”一词的前面未加任何限定语,则指的是“连续傅里叶变换”。“连续傅里叶变换”将平方可积的函数f(t) 表示成复指数函数的积分或级数形式。 这是将频率域的函数F(ω)表示为时间域的函数f(t)的积分形式。 连续傅里叶变换的逆变换 (inverse Fourier transform) 为 即将时间域的函数f(t)表示为频率域的函数F(ω)的积分。 一般可称函数f(t)为原函数,而称函数F(ω)为傅里叶变换的像函数,原函数和像函数构成一个傅立叶变换对(transform pair)。 除此之外,还有其它型式的变换对,以下两种型式亦常被使用。在通信或是信号处理方面,常以 来代换,而形成新的变换对 : 或者是因系数重分配而得到新的变换对: 一种对连续傅里叶变换的推广称为分数傅里叶变换(Fractional Fourier Transform)。 当f(t)为偶函数(或奇函数)时,其正弦(或余弦)分量将消亡,而可以称这时的变换为余弦变换(cosine transform) 或 正弦变换(sine transform) 另一个值得注意的性质是,当f(t) 为纯实函数时,F(�6�1ω) = F (ω) 成立 参考资料: http://zhwikipediaorg/wiki/傅里叶变换

f(t)是t的周期函数,如果t满足狄里赫莱条件:在一个以2T为周期内f(X)连续或只有有限个第一类间断点,附f(x)单调或可划分成有限个单调区间,则F(x)以2T为周期的傅里叶级数收敛,和函数S(x)也是以2T为周期的周期函数,且在这些间断点上,函数是有限值;在一个周期内具有有限个极值点;绝对可积。称为积分运算f(t)的傅立叶变换。

傅里叶变换是一种分析信号的方法,它可分析信号的成分,也可用这些成分合成信号。许多波形可作为信号的成分,比如正弦波、方波、锯齿波等,傅立叶变换用正弦波作为信号的成分。

离散信号傅里叶变换的公式如下所示:

离散傅里叶变换的原理是将原本非周期的信号复制扩展为周期信号,在实际的数字电路处理中,处理的信号是有限长的,取长度为N,即N为信号 的周期,对于有限长周期信号,其离散傅里叶变换有如下性质:

其中 为周期信号的傅里叶级数,而 表示当且仅当 时有 ,因此可以将傅里叶变换转为离散表达,如下所示:

考虑 以N为周期,因此仅需要计算k从0到N-1即可,取 此公式写成矩阵乘法模式如下所示:

W为一个 的方阵,该计算的复杂度为

对于系数矩阵中的元素 ,其公式如下所示:

考虑 ,推导公式如下所示:

再考虑 和 的情况:

再考虑 和 的情况:

最后考虑 且 或 的情况:

根据上述推导,可以得出系数W具有以下四条性质,这三条性质会在后续推导中用到:

基n快速傅里叶变换用于一个长度N为 的序列,例如基2快速傅里叶作用在 的序列上,基4快速傅里叶作用在 的序列上。现在考虑基2FFT的推导(硬件实现一般使用基4或基8FFT实现),首先写出有限长离散序列的傅里叶变换,记一个信号 的FFT变换为 :

快速傅里叶变换的核心思想为 分而治之 ,即 分治法 ,该思想的核心是将一个长度为N的问题,分级为两个长度为 的问题,应用在这里即是需要将一个序列长度为N的FFT变换问题分解为两个序列长度为 的FFT变换。首先进行如下变换:

矩阵的形式如下所示:

根据W的性质 ,代入后有:

矩阵形式的表达如下所示,现在的矩阵为两个个高度为N,长度为N/2的矩阵。

代入 ,根据W的性质 有:

矩阵表达如下所示:

代入 ,根据W的性质 有:

矩阵表达如下所示:

根据上述推导,一个长度为N点的离散傅里叶变换被变为一个长度为 的离散傅里叶变换,取 公式如下所示:

根据频域抽取基2FFT的算法,除了按前后分类外,还可以直接按奇偶进行分类,公式如下所示:

对应的矩阵表示为:

取序列 , 代入上述表达式,取 再代入W的变换性质可得:

其对应的矩阵为:

即将对F[k]的上半部分结果分解为两个FFT结果的和,即:

现在考虑F[k]的下半部分,公式如下所示:

取 ,代入有:

代入W的性质 和 ,有:

将变量i更换为k,其矩阵形式为:

最终可以将结果汇总为:

蝶形运算的公式如下,蝶形运算输入为 和 ,输出为 和 ,系数为 :

其转换为矩阵表达为:

蝶形公式对应着2点FFT的计算,2点FFT的计算如下所示:

转换为矩阵表达为:

对应到蝶形运算有:

首先列出基2频域抽取FFT的分治公式:

以一个8点FFT为例,输入序列为:

进行第一次分治,分为两个4点FFT,序列为:

示意图如下所示,偶数标号的结果由第一个FFT生成,奇数标号的结果由第二个FFT生成:

随后进行第二次分治,将每个4点FFT分解为两个2点FFT,每个序列为:

示意图如下所示:

最终通过2点FFT计算出结果,但如上图所示,计算出的结果位置与标号并不对应,例如计算输出的标号为2的数据(Y10[1])应当位于输出序列(X)的标号4(X[4])。其变换规律为计算输出的标号为n的数据(第n+1个数据)对应到输出序列标号为m的数据,n为m的二进制反序。以计算输出标号为6(第七个数据)的数据Y13[0]为例,6的二进制为110,反序为011,对应十进制数为3,即有 。

首先列出时域抽取FFT的分治公式:

在上一篇中 通俗易懂的傅里叶级数和傅里叶变换(一) 中简单介绍了什么是傅里叶级数,最后得到了在周期为 的傅里叶级数的系数解,那么如何得到任意周期的傅里叶级数呢?

我们先看在周期为 的函数傅里叶级数表达:

其对应的解为:

如何将其变为任意周期的函数呢?

其实这里只需要简单的换元操作即可。

举个栗子:

其周期为 , 。我们令 ,则 ,整理下:

所以在对于t来说就变换成了周期为 的函数。

so对于周期为 (方便计算)的函数f(t) 只需令 带入原周期为 的函数即可:

同样的可以得到:

最后我们得到:

过程很简单,我就省略了,毕竟人生苦短。

我们在写一下傅里叶级数的公式:

其中T代表函数的周期,也就是上面的2L,对应的解就是:

想要得到傅里叶级数的复数形式,需要先了解下欧拉公式。

关于欧拉公式,网上有很多的博客,这里就不细说了,只是简单说下欧拉公式的本质。

我们先看下公式:

可以看作是复平面上的一个向量,其到实轴的投影是 ,到虚轴的投影是 ,其中 便是向量与实轴的夹角。

而欧拉公式的直观理解就是在复平面上做圆周运动

随着 变化, 就变成圆周运动了。而前面的系数a则是圆的半径,当a=1的时候就是在单位圆上做圆周运动。

而且通过欧拉公式,我们可以得到三角函数的复数形式:

将上面的复变三角函数替换傅里叶级数中的三角函数得到:

我们令 中的n为-n

则得到:

所以可以看到n的范围变成了 到 ,并且每一项都有 ,于是我们可以得到一个漂亮的形式:

其中 分为3中情况:

我们将傅里叶级数之前的解带入上边

这里因为cos是偶函数,sin是奇函数所以:

可以惊奇的发现,三种情况的解是一样的。所以对于任意周期函数,我们都可以写成:

但其中的每一项是什么意思呢?

还记得之前说的 的本质吗?在圆上做圆周运动,那么 也是在做周期运动了。那 又是什么呢?

我们知道 ,所以我们可以把 看成是以 为单位的频率(正常来讲频率是 )。而系数 是就可以看成是几倍的基频,正数是逆时针运动,负数就是顺时针运动。在图形上的反应就是,频率越高,转的越快了

,但其最小公共周期是一样的。

1倍基频

那么系数 怎么理解呢?前面说过 的系数a是代表 运动的圆半径,这里 是复数是不是也能这样理解呢?其实粗糙来讲是可以这样理解的。

看个图,只管的理解下把

上图中红色的向量相对于蓝色的向量只是多了系数 ,所以红色向量运动的半径就是2刚好是复数 的模长乘以1,当然除此之外,红色向量的幅角也变大了些。这些都是因为复数的乘法性质---复数相乘表现为幅角相加,模长相乘。

这下,当有人和你说傅里叶变换是把时域变换到频域上,你应该就很容易理解是什么意思了。频域就是1倍,2倍,3倍的 ,而每个 都有自己的幅长 ,当把这些所有的 相加,就得到时域中的图像。

更加生动有趣的介绍可以参见 傅里叶分析之掐死教程 ,我这里是从数学的角度来介绍傅里叶变换。

目前该证明的都差不多了,还有最后一个任务,就是推广到非周期函数上。对于非周期函数,我们可以看成是周期无限远的函数,那也就是周期T变成 的时候傅里叶级数。随则T的变大 也就不断的减小,当T趋近于 的时候, 也由 变成了 ,那么很自然就需要对 做积分。

我们先看下

当T趋近于 的时候 我们可以得到:

将这些带入 傅里叶级数,并且T趋近于 ,就得到:

其中画红圈的地方就是傅里叶变换

而整个公式就是傅里叶逆变换,写成:

以上就是傅里叶变换的全部内容,如果你喜欢的话就点个赞。有时间的话,我会写些傅里叶变换的应用。

如下图:

傅立叶变换,表示能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅立叶变换具有多种不同的变体形式,如连续傅立叶变换和离散傅立叶变换。最初傅立叶分析是作为热过程的解析分析的工具被提出的。

相关信息:

尽管最初傅里叶分析是作为热过程的解析分析的工具,但是其思想方法仍然具有典型的还原论和分析主义的特征。

"任意"的函数通过一定的分解,都能够表示为正弦函数的线性组合的形式,而正弦函数在物理上是被充分研究而相对简单的函数类,这一想法跟化学上的原子论想法何其相似!奇妙的是,现代数学发现傅里叶变换具有非常好的性质,使得它如此的好用和有用。

欢迎分享,转载请注明来源:表白网

原文地址:https://h5.hunlipic.com/biaobai/3120360.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2024-02-06
下一篇2024-02-06

发表评论

登录后才能评论

评论列表(0条)

    保存