“鸡兔同笼问题”是我国古算书《孙子算经》中著名的数学问题,其内容是:“今有雉(鸡)兔同笼,上有三十五头,下有九十四足。问雉兔各几何。”
意思是:有若干只鸡和兔在同个笼子里,从上面数,有三十五个头;从下面数,有九十四只脚。求笼中各有几只鸡和兔?
《孙子算经》用算术方法来解:脚数的1/2减头数,即94/2-35=12为兔数;头数减兔数即35-12=23为鸡数。这种解法虽然直接而自然,也很合乎逻辑,但是却不容易理解。知道孙子是如何解答这个“鸡兔同笼”问题的吗?
原来孙子提出了大胆的设想。他假设砍去每只鸡和每只兔1/2的脚,则每只鸡就变成了“独脚鸡”,而每只兔就变成了“双脚兔”。这样,“独脚鸡”和“双脚兔”的脚就由94只变成了47只;而每只“鸡”的头数与脚数之比变为1:1,每只“兔”的头数与脚数之比变为1:2。由此可知,有一只“双脚兔”,脚的数量就会比头的数量多1。所以,“独脚鸡”和“双脚兔”的脚的数量与他们的头的数量之差,就是兔子的只数。
用现在列方程的方法,这个问题就更容易解决了。设鸡有x只,兔有y只,则根据题意有:x+y=35,2x+4y=94,解这个方程组得x=23,y=12。
“鸡兔同笼问题”除了可以用方程解,还可以用“假设法”来解答。如今,“鸡兔同笼问题”已经演变成了各种题型,比如下面几道应用题,你会解答吗?
1班主任张老师带五年级(2)班50名同学栽树,张老师栽5棵,男生每人栽3棵,女生每人栽2棵,总共栽树120棵,问几名男生,几名女生?
2大油瓶每瓶装4千克,小油瓶2瓶装1千克,现有100千克油装了共60个瓶子。问大小油瓶各多少个?
3小毛参加数学竞赛,共做20道题,得67分,已知做对一道得5分,不做得0分,错一题扣1分,又知道他做错的题和没做的同样多。问小毛做对几道题?
4有蜘蛛,蜻蜓,蝉三种动物共18只,共有腿118条,翅膀20对(蜘蛛8条腿;蜻蜓6条腿,2对翅膀;蝉6条腿,1对翅膀),三种动物各几只?
鸡兔同笼公式
解法1:(兔的脚数×总只数-总脚数)÷(兔的脚数-鸡的脚数)
=鸡的只数
总只数-鸡的只数=兔的只数
解法2:(
总脚数-鸡的脚数×总只数)÷(兔的脚数-鸡的脚数)
=兔的只数
总只数-兔的只数=鸡的只数
解法3:总脚数÷2—总头数=兔的只数
总只数—兔的只数=鸡的只数
如果先假设它们全是鸡,于是根据鸡兔的总数就可以算出在假设下共有几只脚,把这样得到的脚数与题中给出的脚数相比较,看看差多少,每差2只脚就说明有1只兔,将所差的脚数除以2,就可以算出共有多少只兔。概括起来,解鸡兔同笼题的基本关系式是:兔数=(实际脚数-每只鸡脚数×鸡兔总数)÷(每只兔子脚数-每只鸡脚数)。类似地,也可以假设全是兔子。
我们也可以采用列方程的办法:设兔子的数量为x,鸡的数量为y
那么:x+y=35那么4x+2y=94 这个算方程解出后得出:兔子有12只,鸡有23只。
1、已知鸡和兔共有15只,共有40只脚鸡和兔各有几只。
2、假设鸡和练有素,吹一声哨,它起一只脚,(40-15=25) ,再吹一声哨,它们又抬起一只脚,(25-15=10),这时鸡都一屁股坐地上了,兔子还两只脚立着。所以,兔子有10/2=5只,鸡有15-5=10只。
3、兔子有几只=脚数÷2-总数仅限于2脚和4脚。兔子有几只=(总脚数-总数×鸡的脚数)÷(兔的脚数-鸡的脚数)此公式万能。
鸡兔同笼公式 :
解法1:(兔的脚数×总只数-总脚数)÷(兔的脚数-鸡的脚数)=鸡的只数;
总只数-鸡的只数=兔的只数。
解法2:(总脚数-鸡的脚数×总只数)÷(兔的脚数-鸡的脚数)=兔的只数;
总只数-兔的只数=鸡的只数。
解法3:总脚数÷2—总头数=兔的只数;
总只数—兔的只数=鸡的只数。
"鸡兔同笼"是一类有名的中国古算题最早出现在《孙子算经》中许多小学算术应用题都可以转化成这类问题,或者用解它的典型解法--"假设法"来求解因此很有必要学会它的解法和思路。
详细解法:
例1:有若干只鸡和兔子,它们共有88个头,244只脚,鸡和兔各有多少只?
解:我们设想,每只鸡都是"金鸡独立",一只脚站着;而每只兔子都用两条后腿,像人一样用两只脚站着,现在,地面上出现脚的总数的一半,也就是244÷2=122(只)。
在122这个数里,鸡的头数算了一次,兔子的头数相当于算了两次因此从122减去总头数88,剩下的就是兔子头数122-88=34,有34只兔子,当然鸡就有54只。
答:有兔子34只,鸡54只。
上面的计算,可以归结为下面算式:
总脚数÷2-总头数=兔子数。
欢迎分享,转载请注明来源:表白网
评论列表(0条)