在不定积分的求解过程中,有很多常用的公式,下面是其中的一些:
1、幂函数积分公式:∫x^n dx = x^(n+1)/(n+1) + C(其中C为常数)
2、三角函数积分公式:
(1)∫sin(x) dx = -cos(x) + C
(2)∫cos(x) dx = sin(x) + C
(3)∫tan(x) dx = -ln|cos(x)|
(4)∫cot(x) dx = ln|sin(x)|+ C
3、指数函数与对数函数积分公式:
(1)∫e^x dx = e^x + C
(2)∫a^x dx = a^x/ln(a) + C(其中a为大于0且不等于1的常数)
(3)∫1/x dx = ln|x|+ C
(4)∫log_a(x) dx = xlog_a(x) - x + C(其中a为大于0且不等于1的常数)
以上是不定积分中常用的一些公式,它们可以帮助我们更加快速地求出一个函数的不定积分。需要注意的是,在求解不定积分时,有时需要结合不同的公式进行运用,同时还需要注意各个公式的使用条件和特殊情况,以免出现错误。
解答如下:
sinarctanx=x/(1+xx)的平方根;
cosarctanx=1/(1+xx)的平方根;
cotarctanx=1/x;
sinarccosx=(1-xx)的平方根;
tanarccosx=(1-xx)的平方根/x
扩展资料不定积分的公式
1、∫ a dx = ax + C,a和C都是常数
2、∫ x^a dx = [x^(a + 1)]/(a + 1) + C,其中a为常数且 a ≠ -1
3、∫ 1/x dx = ln|x| + C
4、∫ a^x dx = (1/lna)a^x + C,其中a > 0 且 a ≠ 1
5、∫ e^x dx = e^x + C
6、∫ cosx dx = sinx + C
7、∫ sinx dx = - cosx + C
8、∫ cotx dx = ln|sinx| + C = - ln|cscx| + C
9、∫ tanx dx = - ln|cosx| + C = ln|secx| + C
10、∫ secx dx =ln|cot(x/2)| + C = (1/2)ln|(1 + sinx)/(1 - sinx)| + C = - ln|secx - tanx| + C = ln|secx + tanx| + C
使用二重积分与两边夹法则积出e的x^2次方从0到正无穷是二分之根号π,根据e的x^2是偶函数得出根号π。
I=[∫e^(-x^2)dx][∫e^(-y^2)dy]
=∫∫e^(-x^2-y^2)dxdy
转化成极坐标
=[∫(0-2π)da][∫(0-+无穷)e^(-p^2)pdp]
=2π[(-1/2)e^(-p^2)|(0-+无穷)]
=2π1/2
=π
∫e^(-x^2)dx=I^(1/2)=√π
不定积分的公式:
1、∫ a dx = ax + C,a和C都是常数
2、∫ x^a dx = [x^(a + 1)]/(a + 1) + C,其中a为常数且 a ≠ -1
3、∫ 1/x dx = ln|x| + C
4、∫ a^x dx = (1/lna)a^x + C,其中a > 0 且 a ≠ 1
5、∫ e^x dx = e^x + C
6、∫ cosx dx = sinx + C
7、∫ sinx dx = - cosx + C
8、∫ cotx dx = ln|sinx| + C = - ln|cscx| + C
∫ln²xdx=xln²x - 2xlnx + 2x + C。C为积分常数。
解答过程如下:
分部积分:
∫ln²xdx
=xln²x - ∫x 2lnx 1/x dx
=xln²x - 2xlnx + 2∫x 1/x dx
=xln²x - 2xlnx + 2x + C
扩展资料:
求不定积分的方法:
第一类换元其实就是一种拼凑,利用f'(x)dx=df(x);而前面的剩下的正好是关于f(x)的函数,再把f(x)看为一个整体,求出最终的结果。(用换元法说,就是把f(x)换为t,再换回来)。
分部积分,就那固定的几种类型,无非就是三角函数乘上x,或者指数函数、对数函数乘上一个x这类的,记忆方法是把其中一部分利用上面提到的f‘(x)dx=df(x)变形,再用∫xdf(x)=f(x)x-∫f(x)dx这样的公式,当然x可以换成其他g(x)。
常用积分公式:
1)∫0dx=c
2)∫x^udx=(x^(u+1))/(u+1)+c
3)∫1/xdx=ln|x|+c
4)∫a^xdx=(a^x)/lna+c
5)∫e^xdx=e^x+c
6)∫sinxdx=-cosx+c
7)∫cosxdx=sinx+c
8)∫1/(cosx)^2dx=tanx+c
9)∫1/(sinx)^2dx=-cotx+c
10)∫1/√(1-x^2) dx=arcsinx+c
不定积分基本公式如下:
在微积分中,一个函数f 的不定积分,或原函数,或反导数,是一个导数等于f 的函数 F ,即F ′ = f。
不定积分和定积分间的关系由微积分基本定理确定。其中F是f的不定积分。
不定积分与定积分之间的关系:
定积分是一个数,而不定积分是一个表达式,它们仅仅是数学上有一个计算关系。一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而没有不定积分。
连续函数,一定存在定积分和不定积分;若在有限区间[a,b]上只有有限个间断点且函数有界,则定积分存在;若有跳跃、可去、无穷间断点,则原函数一定不存在,即不定积分一定不存在。
欢迎分享,转载请注明来源:表白网
评论列表(0条)