1、梯形周长公式C=上底+下底+两个腰长。
2、梯形判定:
一组对边平行,另一组对边不平行的四边形是梯形。一组对边平行且不相等的四边形是梯形。
3、梯形特征:
梯形:有一组对边平行,另一组对边不平行的四边形。
平行的两边叫做梯形的底边,在下面且较长的一条底边叫下底,在上面且较短的一条底边叫上底。另外两边叫腰。
夹在两底之间的垂线段叫梯形的高。一腰垂直于底的梯形叫直角梯形。两腰相等的梯形叫等腰梯形。等腰梯形是一种特殊的梯形,其判定方法与等腰三角形判定方法类似。梯形有不稳定性。
梯形的周长公式是L=a+b+c+d
一、公式详解
其中,公式中a,b,c,d分别为梯形的四边长度,a、b为梯形的上底和下底,c、d为梯形的两腰,L为梯形周长。等腰梯形的周长公式是上底+下底+2腰,用字母表示为a+c+2b。梯形是指只有一组对边平行的四边形。
平行的两边叫做梯形的底边,较长的一条底边叫下底,较短的一条底边叫上底。另外两边叫腰;夹在两底之间的垂线段叫梯形的高。
平行的两边叫做梯形的底边:较长的一条底边叫下底,较短的一条底边叫上底;另外两边叫腰;夹在两底之间的垂线段叫梯形的高。一腰垂直于底的梯形叫直角梯形。两腰相等的梯形叫等腰梯形。
判定一个任意四边形为等腰梯形,如果不能直接运用等腰梯形的判定定理,一般的方法是通过作辅助线。将此四边形分解为熟悉的多边形,此例就是通过作平行线,将四边形分解成为一个平行四边形和一个等腰三角形。
过顶点作一条对角线的平行线,把两条对角线的数量关系和位置关系集中到一个三角形中,将求梯形上下底的长转化为求直角三角形斜边的长。
二、梯形介绍及其判定
梯形(trapezoid)是只有一组对边平行的四边形 。平行的 两边叫做梯形的底边:较长的一条底边叫下底,较短的一条底边叫上底;另外两边叫腰;夹在两底之间的垂线段叫梯形的高。一腰垂直于底的梯形叫直角梯形。两腰相等的梯形叫等腰梯形。
判定
1、一组对边平行,另一组对边不平行的四边形是梯形。
2、一组对边平行且不相等的四边形是梯形
梯形的周长公式:上底+下底+腰+腰。
梯形的面积公式:(上底+下底)×高÷2。
性质
1、等腰梯形的两条腰相等。
2、等腰梯形在同一底上的两个底角相等。
3、等腰梯形的两条对角线相等。
4、等腰梯形是轴对称图形,对称轴是上下底中点的连线所在直线(过两底中点的直线)。
1、梯形周长公式C=上底+下底+两个腰长
2、等腰梯形的周长公式:上底+下底+2腰
3、梯形面积公式:S=1/2(上底+下底)高
4、梯形的面积公式: 中位线×高
5、对角线互相垂直的梯形面积为:对角线×对角线÷2
性质
1.等腰梯形的两条腰相等。
2.等腰梯形在同一底上的两个底角相等。
3.等腰梯形的两条对角线相等。
4.等腰梯形是轴对称图形,对称轴是上下底中点的连线所在直线(过两底中点的直线)。
判定
①两腰相等的梯形是等腰梯形;
②同一底上的两个角相等的梯形是等腰梯形;
③对角线相等的梯形是等腰梯形。
设直角梯形上边长为a,下边长为b,高为h,则:
1、其重心距离下底边b的高度为:
2、其重心距离直角边的距离为:
在直角梯形ABCD中,AD//BC,∠B=90°,则∠A=90°,∠C+∠D=180°。
重要性质:直角梯形斜腰的中点到直角腰的二端点距离相等。
扩展资料:
若一个三角形的三边a,b,c ( ) 满足:
1、 ,则这个三角形是锐角三角形;
2、 ,则这个三角形是直角三角形;
3、 ,则这个三角形是钝角三角形。
公式:
1、 (面积=底×高÷2。其中,a是三角形的底,h是底所对应的高)注释:三边均可为底,应理解为:三边与之对应的高的积的一半是三角形的面积。这是面积法求线段长度的基础。
2、 (其中,三个角为∠A,∠B,∠C,对边分别为a,b,c。参见三角函数)
3、 (l为高所在边中位线)
4、 (海伦公式),其中
参考资料:
欢迎分享,转载请注明来源:表白网
评论列表(0条)