什么样的天体叫超新星?

什么样的天体叫超新星?,第1张

 超新星编辑本段 超新星的概念:超新星(英文名为supernova,也称:nova。)理论而言,质量介于太阳的8~25倍之间的恒星会在一场超新星爆炸中结束自己的生命。当这颗恒星耗尽所有的燃料,它就会突然失去一直支撑自身重量的压力,它的核心坍缩成为一颗中子星——毫无生气的超致密残骸,外侧的气体包层则会以5%的光速抛射出去。超新星是某些恒星在演化接近末期时经历的一种剧烈爆炸。这种爆炸都极其明亮,过程中所突发的电磁辐射经常能够照亮其所在的整个星系,并可持续几周至几个月才会逐渐衰减变为不可见。在这段期间内一颗超新星所辐射的能量可以与太阳在其一生中辐射能量的总和相媲美。目前,在银河系和许多河外星系中都已经观测到了超新星,总数达到数百颗。 超新星爆发: 一颗超新星在爆发时输出的能量可高达(10)^43J,这几乎相当于我们的太阳在它长达100亿年的主序星阶段输出能量的总和。超新星爆发时,抛射物质的速度可达10000千米/秒,光度最大时超新星的直径可大到相当于太阳系的直径。1970年观测到的一颗超新星,在爆发后的30天中直径以5000千米/秒的速度膨胀,最大时达到3倍太阳系直径。在这之后直径又开始收缩。超新星爆发事件就是一颗大质量恒星的“暴死”。对于大质量的恒星,如质量相当于太阳质量的8~20倍的恒星,由于质量的巨大,在它们演化的后期,星核和星壳彻底分离的时候,往往要伴随着一次超级规模的大爆炸。这种爆炸就是超新星爆发。 超新星的形成: 已知存在的超新星有几种不同类型,但其形成机制都来自两种情形之一:①通过核聚变产生能量的过程终止或突然启动②一颗白矮星可能从其伴星那里获取并积累物质(通常是通过吸积,少数通过合并)从而提升内核的温度并由此导致热失控下的核聚变,最终将恒星完全摧毁。当质量超过钱德拉塞卡极限(约为138倍太阳质量)的恒星内部的核聚变炉无法提供足够的能量时,恒星将走向坍缩;而当吸积过程中的白矮星质量达到这一极限时它们将会质量过高而烧毁。需要注意的是,白矮星还会通过碳氮氧循环在其表面形成一种与上述有所不同的并且规模小很多的热核爆炸,这被称作新星。一般认为质量小于9倍太阳质量左右的恒星在经历引力坍缩的过程后是无法形成超新星的。 观测历史编辑本段 时间 方位 视亮度 观测、记录者

185 半人马座 比金星亮 中国

369 仙后座 比木星亮 中国

1006 天狼座 比金星亮 中国、日本、朝鲜、阿拉伯

1054 金牛座 比金星亮 中国、日本、阿拉伯、印度

1572 仙后座 与金星相同 布拉赫等

1604 蛇夫座 介于天狼星和木星之间 中国人和开普勒、伽利略等 发现编辑本段 由于在一个星系中超新星是很少见的事件,银河系大约每隔50年发生一次,为了得到良好的研究超新星的样本需要定期检测许多星系。在其他星系的超新星无法准确地预测。通常情况下,当它们被发现时,过程已经开始。对超新星最有科学意义的研究(如作为标准烛光来测量距离)需要观察其峰值亮度。因此,在它们达到峰值之前发现他们非常重要。业余天文学家的数量大大超过了专业天文学家,他们通常通过光学望远镜观察一些较近的星系,并和以前的相比较,在寻找超新星方面发挥了重要的作用。到20世纪末期,天文学家越来越多转向用计算机控制的天文望远镜和CCD来寻找超新星。这种系统在业余天文学家中很流行,同时也有较大的设施,如卡茨曼自动成像望远镜(KAIT)。最近,超新星早期预警系统(SNEWS)项目也已开始使用中微子探测器网络来早期预警银河系中超新星。中微子是超新星爆炸时产生的大量的次原子粒子并且它不被银河系的星际气体和尘埃所吸收。超新星的搜寻分为两大类:一些侧重于相对较近发生的事件,另一些则寻找更早期的爆炸。由于宇宙的膨胀,一个已知发射光谱的远程对象的距离可以通过测量其多普勒频移(或红移)来估计。平均而言,较远的物体比较近的物体以更大速度减弱,因此具有更高的红移。因此,搜寻分为高红移和低红移,其边界约为z = 01–03之间----其中z是频谱频移的无量纲量度。高红移的搜寻通常涉及到对超新星光度曲线的观测,这对于生成哈勃图以及进行宇宙学预测所用的标准或校准烛光很有用。在低红移端超新星的光谱比其在高红移端更有实用价值,并可用于研究超新星周围的物理与环境 。低红移也可用于测定近距端的哈勃曲线,这是用来描述可见的星系距离与红移之间的关系曲线,参见哈勃定律。分类编辑本段 天文学家把超新星按它们光谱上的不同元素的吸收线来分成数个类型:   ①I型:没有氢吸收线  ②Ia型:没有氢、氦吸收线,有硅吸收线  ③Ib型:没有氢吸收线,有氦吸收线  ④Ic型:没有氢、氦、硅吸收线  ⑤II型:有氢吸收线 I型超新星一般都比II型超新星亮。 (右图)在一个大质量、演变的恒星(a)元素成洋葱的壳层状进行融合,形成铁芯(b) 并且达到钱德拉塞卡质量和开始塌缩。核心的内部被压缩形成中子(c),造成崩落的物质反弹(d)和形成向外传播的冲击波(红色)。冲积波开始失去作用(e),但是中微子的加入使交互作用恢复活力。周围的物质被驱散(f),留下的只有被简并的残骸。

影响编辑本段 重元素的来源 超新星是生成比氧重的元素的关键来源。这些元素中,铁-56以及比它轻的元素的生成来自核聚变,而比铁重的元素都来自超新星爆炸时进行的核合成。尽管存在争议,超新星确实是最有可能的进行r-过程的候选场所,r-过程是核合成在高温以及高中子密度时进行的一种快速形式。反应中有大量高度不稳定的原子核产生,这些原子核都含有过剩数量的中子。这些状态不稳定,经过快速的β衰变而达到更稳定的状态。r-过程有可能发生在II型超新星的爆发中,有半数左右丰度的比铁重的元素都会在其中产生,其中包括钚、铀、锎等元素。与之能相提并论的其他产生重元素的过程只有在衰老的红巨星内发生的s-过程,但这一过程进行起来要慢得多,而且不能产生比铅更重的元素。 恒星演化中的作用 大麦哲伦星云内位于成群的气体和尘埃中的超新星遗迹N 63A 超新星爆发后的遗迹包括一个中央的致密星体和因激波而快速向外扩散的物质。这些物质在快速膨胀的状态下扫过周围的星际物质,这种状态能够持续长达两个世纪。其后它们将经历一个绝热膨胀的过程,进而再用一万年左右的时间逐渐冷却并与周围的星际物质混合。根据天文学中的标准理论,大爆炸产生了氢和氦,可能还有少量锂;而其他所有元素都是在恒星和超新星中合成的。超新星爆发令它周围的星际物质充满了金属(对于天文学家来说,金属就是比氦重的所有元素,与化学中的概念不同)。这些合成的金属丰富了形成恒星的分子云的元素构成,所以每一代的恒星(及行星系)的组成成分都有所不同,由纯氢、氦组成到充满金属的组成。超新星是宇宙间将恒星核聚变中生成的较重元素重新分布的主要机制,不同元素的所有的分量对于一颗恒星的生命,以至围绕它的行星的存在性都有很大的影响。膨胀中的超新星遗迹的动能能够压缩凝聚附近的分子云,从而启动一颗恒星的形成。如果气体云无法释掉过多的能量,增大的湍流压也能阻止恒星形成。在太阳系附近的一颗超新星爆发中,借助其中半衰期较短的放射性同位素的衰变产物所提供的证据能够了解四十五亿年前太阳系的元素组成,这些证据甚至显示太阳系的形成也有可能是由这颗超新星爆发而启动的。由超新星产生的重元素经过了和天文数字一样长的时间后,这些化学成分最终使地球上生命的诞生成为可能。对地球的影响 如果一颗超新星爆发的位置非常接近地球以至于它能够对地球的生物圈产生明显的影响,这样的超新星被称为近地超新星,它们到地球的距离粗略为一百光年以内。超新星对类地行星所产生的负面影响的主要原因是伽玛射线:对地球而言,伽玛射线能够在高空大气层中引起化学反应,将氮分子转化为氮氧化物,并破坏臭氧层使地球表面暴露于对生物有害的太阳辐射与宇宙射线之下。据认为一颗近地超新星引起的伽玛射线暴有可能是造成奥陶纪-志留纪灭绝事件的原因,这造成了当时地球近60%的海洋生物的消失。有关近地超新星爆发的预测通常集中在有可能形成II型超新星的大质量恒星上,而在距太阳几百光年的范围内确实有几颗主要恒星有可能在短至一千年的时间内成为超新星;一个典型的例子是参宿四,它是一颗距地球427光年的红超巨星。不过值得注意的是,一般认为这些预测中的超新星对地球几乎不会产生任何影响。根据近来的推算,一颗II型超新星的爆发若要摧毁地球上臭氧层的一半,它距地球的距离需要小于8秒差距(合26光年)。这类预测的结果主要与对大气层建立的模型有关,而它所用到的辐射通量来自对大麦哲伦星云内II型超新星SN 1987A的测量值。当前对在地球周围10秒差距范围内超新星爆发的几率的预测所得的的结果差别很大,从每一亿年一次]到每一百亿年一次不等。如果Ia型超新星的爆发距地球足够近,它们被认为是潜在的极大危险,这是由于它们都形成于普通的黯淡的白矮星,从而一颗Ia型超新星有可能在人们始料未及的情形下在一个未被认真研究过的恒星系统中爆发。有理论认为Ia型超新星影响地球的范围是1000秒差距以内(合3300光年,已知的最近候选者是飞马座IK(见下文)。1996年伊利诺伊大学香槟分校的天文学家在理论上推测,有可能能够从地层中的金属同位素来探测地球过去受到超新星影响的痕迹。随即经慕尼黑工业大学的研究人员报告,在太平洋的深海岩层中探测到了因近地超新星造成的铁-60的富集。 **《超新星》编辑本段 外文名称:Ultranova导演:Bouli Lanners, Yasuo Baba 主演:Michal Abiteboul, Vincent Belorgey, Vincent Lecuyer, 三上博史, Tomoyo Harada, Kiwako Harada, Hiroyuki Okita, Hitomi Takahashi, 田中邦卫, Akira Fuse 类型:喜剧 爱情 年份:2005 地区:法国 语言:法语 片长:97分钟  **介绍1 Dimitri是个房地产经纪人。他不喜欢自己的工作,而且和同事也相处得不好。偶然间他遇上凯丝,但这段感情似乎没有发展下去的空间 **介绍2 二十二世纪初,一艘医疗救生船“夜莺229号”正进行一次深层太空的例行巡视。在这艘寂静孤独的飞船里工作的有上尉AJ马尔里,副手尼克凡山特,主治医师官奇拉艾凡斯,计算机工程师本索特摩杰,医学家叶尔治潘纳罗萨,以及丹尼克罗德等六名成员。 巡视中,他们发现在距离他们上百万光年之外有一颗星体正爆发出奇怪的异类物质,几个人一时不知如何处置,就在此时他们接收到了一个紧急求援信号,尽管很危险,但是救援小组的成员没有选择,只有前往救援。 跌跌撞撞的飞船终于接近了那个爆发的中心地带,立刻他们被一个巨大的蓝色星体的引力牵制住了。在这里,他们营救上了一名神秘叵测年青男子卡尔拉森,让大家不安的是他们感觉到这个人对飞船成员随时可能造成危险。而除此之外,夜莺号上的成员还要和那个巨大的宇宙引力作斗争。 飞船上的人们正在面临着死亡,幸存者必须摆脱这颗星体的引力返回银河系,因为,这颗巨大的超新星的爆发随时都有可能发生 韩国组合 超新星编辑本段 超新星(�4�1�2�1�1�0)

  所属公司:韩国MNET Media

  出道日期:2007年9月21日(KBS2 《音乐银行》)

  出道节目:《M! PICK》 第六季超新星篇(2007 年 8 月 2 日开播)

  平均身高:183 cm

  平均年龄:226 岁

  应援颜色:珍珠香槟白

  发行专辑:超新星 1st Single (Digital Single)

  超新星 1辑 - 《The Beautiful Stardust》

  2008 《恋歌》 超新星(Digital Single)

  韩国官网:3wchoshinsungcom/

  日本官网:3wchoshinseicom

  日本 fan club : milkyway(银河)

  韩国最大 fan cafe:SPLAND(cafedaumnet/quintuplet5)

  韩网超新星 fan page:(3wdamechoshinseicom)

  韩国 television star zone 超新星 gallery:tvzonebbs6mediadaumnet/griffin/do/talk/gallery/chosinsung/listbbsId=S000083

  超新星 The Star: 3wthestarcokr/

  《M! pick》 program page: mnetmnetcom/NProgram/mpick06/

  超新星 artist page : musicmnetcom/ArtistInfo/ArtistInfoaspArtistID=146723

  一辑 : 3wmnetcom/Ver2/AlbumBoom/albumBoomPage/20070919_cho/cDetailphpold=&page=1

  Mnet 搜索 “超新星”页面 : searchmnetcom/indexaspsearchArea=ALL&searchWord=%C3%CA%BD%C5%BC%BA

  Say,NO!program page : mnetmnetcom/NProgram/sayno/

  换骨脱胎 : 3wcomedycentercokr/onlycomedy/program_mainphpsidx=110&smnum=4

理论而言,质量介于太阳的8~25倍之间的恒星会在一场超新星爆炸中结束自己的生命。当这颗恒星耗尽所有可用的燃料,它就会突然失去一直支撑自身重量的压力,它的核心坍缩成为一颗中子星——一颗毫无生气的超致密残骸,外侧的气体包层则会以5%的光速抛射出去

当恒星爆发时的绝对光度超过太阳光度的100亿倍、中心温度可达100亿摄氏度,新星爆发时光度的10万倍时,就被天文学家称为超新星爆发了。

一颗超新星在爆发时输出的能量可高达(10)^43焦,这几乎相当于我们的太阳在它长达100亿年的主序星阶段输出能量的总和。超新星爆发时,抛射物质的速度可达10000千米/秒,光度最大时超新星的直径可大到相当于太阳系的直径。1970年观测到的一颗超新星,在爆发后的30天中直径以5000千米/秒的速度膨胀,最大时达到3倍太阳系直径。在这之后直径又开始收缩。(数字不准)

[编辑本段]超新星的由来

超新星恒星中心开始冷却,它没有足够的热量平衡中心引力,结构上的失衡就使整个星体向中心坍缩,造成外部冷却而红色的层面变热,如果恒星足够大,这些层面就会发生剧烈的爆炸,产生超新星。大质量恒星爆炸时光度可突增到太阳光度的上百亿倍,相当于整个银河系的总光度。 恒星爆发的结果:(1)恒星解体为一团向四周膨胀扩散的气体和尘埃的混合物,最后弥散为星际物质,结束恒星的演化史。(2)外层解体为向外膨胀的星云,中心遗留下部分物质坍缩为一颗高密度天体,从而进入恒星演化的晚期和终了阶段。 中国古代天文学家观测到的1054年爆发的超新星的遗迹。在一个星系中,超新星是罕见的天象,但在星系世界内,每年却都能观测到几十颗。1987年2月23日,一位加拿大天文学家在大麦哲伦星云中发现了一颗超新星,这是自1604年以来第一颗用肉眼能看到的超新星,这颗超新星被命名为“1987A”

时间 方位 视亮度 观测、记录者

185 半人马座 比金星亮 中国人。

369 仙后座 比木星亮 中国人。

1006 豺狼座 比金星亮 中国、日本、朝鲜、阿拉伯人。

1054 金牛座 比金星亮 中国、日本、阿拉伯、印度人。

1572 仙后座 与金星相同 布拉赫等。

1604 蛇夫座 介于天狼星和木星之间 中国人和开普勒、伽利略等。

出现超新星爆发这样的宇宙级“暴力事件”概率有多大呢?虽然在每个星系中这一概率是很小的,但由于现在能观测到很多河外星系,所以在每年中都能观测到相当多的河外超新星事件。可是,从1604年以来,在我们银河系中还没有再次观测到超新星。这可能是因为宇宙尘埃的存在遮挡住了出现在银河系的某个角落中的超新星的光芒。

[编辑本段]超新星的分类

天文学家把超新星按它们光谱上的不同元素的吸收线来分成数个类型:

● I型:没有氢吸收线A

● Ia型:没有氢、氦吸收线,有硅吸收线

● Ib型:没有氢吸收线,有氦吸收线

● Ic型:没有氢、氦、硅吸收线

● II型:有氢吸收线

超新星分类法(Supernova taxonomy)

I型超新星

Ia超新星 缺乏氢和氦,光谱的峰值中以游离硅的6150纳米波长的光最为明显。

Ib超新星 未游离的氦原子(He I)的5876纳米,和没有强烈的硅615纳米吸收谱线。

Ic超新星 没有或微弱的氦线,和没有强烈的硅615纳米吸收谱线。

II型超新星

II-P超新星 在光度曲线上有一个"高原区"。

II-L超新星 光度曲线(星等对时间的改变,或光度对时间呈指数变化)呈"线性"的衰减。

如果一颗超新星的光谱不包含氢的吸收线,那它就会被归入I型,不然就是II型。一个类型可根据其他元素的吸收线再细分。天文家认为这些观测差别代表这些超新星不同的来源。他们对II型的来源理论满肯定,但是虽然天文有一些意见解释I型超新星发生的方法,这些意见比较不肯定。

Ia型的超新星没有氦,但有硅。它们都是源于到达或接近钱德拉塞卡极限的白矮星的爆发。一个可能性是那白矮星是处于一个密近双星系统中,它不断地从它的巨型伴星吸收物质,直至它的质量到达钱德拉塞卡极限。那时候电子简并压力再不足以抵销星体本身的引力,结果是白矮星会塌缩成中子星或黑洞,塌缩的过程可以把剩下的碳原子和氧原子融合。而最后核融合反应所产生冲击波就把那星体炸成粉碎。这与新星产生的机制很相似,只是该白矮星未达钱德拉塞卡极限,不会塌缩,能量是来自积聚在其表面上的氢或氦的融合反应。

亮度的突然增加是由爆发中释放的能量所提供的,爆发以后亮度不会即时消失,而是会在一段长时间中慢慢地下降,那是因为放射性钴衰变成铁而放出能量。

Ib超新星有氦的吸收线,而Ic超新星则没有氦和硅的吸收线,天文学家对它们产生的机制还是不太清楚。一般相信这些星都是正在结束它们的生命(如II型),但它们可能在之前(巨星阶段)已经失去了氢(Ic则连氦也失去了),所以它们的光谱中没有氢的吸收线。Ib超新星可能是沃尔夫-拉叶型恒星塌缩的结果。

如果一颗恒星的质量很大,它本身的引力就可以把硅融合成铁。因为铁原子的比结合能已经是所有元素中最高的,把铁融合是不会释放能量,相反的能量反而会被消耗。当铁核心的质量到达钱德拉塞卡极限,它就会即时衰变成中子并塌缩,释放出大量携带着能量的中微子。中微子将爆发的一部份能量传到恒星的外层。当铁核心塌缩时候所产生的冲击波在数个小时后抵达恒星的表面时,亮度就会增加,这就是II型超新星爆发。而视乎核心的质量,它会成为中子星或黑洞。

II型超新星也有一些小变型如II-P型和II-L型,但这些只是描述了光度曲线图的不同(II-P的曲线图有暂时性的平坦地区,II-L则无),爆发的基本原理没有太大差别。

还有一类被称为“超超新星”的理论爆发现象。超超新星指一些质量极大恒星的核心直接塌缩成黑洞并产生了两股能量极大、近光速的喷流,发出强烈的伽傌射线。这有可能是导致伽玛射线暴的原因。

I型超新星一般都比II型超新星亮。

(下图)在一个大质量、演变的恒星(a)元素成洋葱的壳层状进行融合,形成铁芯(b) 并且达到钱德拉塞卡质量和开始塌缩。核心的内部被压缩形成中子(c),造成崩落的物质反弹(d)和形成向外传播的冲击波(红色)。冲积波开始失去作用(e),但是中微子的加入使交互作用恢复活力。周围的物质被驱散(f),留下的只有被简并的残骸。

[编辑本段]观测及其意义

除了在可见光区观测到的超新星遗迹外,通过专门用来观测来自太空的X射线的人造卫星“爱因斯坦天文台”,人类发现了不少天上的X射线源,其中有30个以上是X射线超新星遗迹。1572年出现的隆庆彗星即第古新星,就留下了X射线遗迹。超新星冲击波使得星际介质温度高达几百万开并辐射出强烈的X射线。这是一颗典型的Ⅰ型超新星。

使用射电望远镜可以发现仅由最稀薄气体构成的超新星遗迹。比如,是射电天文学家最先发现了仙后座A这一超新星遗迹,后来在光学波段也发现了它的极暗弱的对应体。

超新星爆发和宇宙线的产生也有一定的关系。星际介质中的粒子运动速度一般都在每秒几十千米范围内,但是也有某些特殊情况——有的粒子运动速度可以接近光速,这就是宇宙线。宇宙线是由一些物质粒子如电子、质子等组成的,在本质上完全不同于电磁波。一般说来,由于地球大气对宇宙线的吸收作用,有探测宇宙线必须到大气层之外。如果搭乘气球上升到50千米的高空,就可以用底片拍摄宇宙线的踪迹。只有极少数能量极高的宇宙线可以到达地球表面。但是,当高能宇宙线与地球大气发生作用时,会引发一种闪光效应,同时产生二级宇宙线,在地球表面探测二级宇宙线是相对容易的。

实验表明,一些能量较低的宇宙线受到太阳活动的影响。比如,太阳活动有一个11年左右的周期,而观测到的低能宇宙线也随着这个周期而有所变化。另外,当太阳活动增强时,会使得地球周围的磁场增强,从而使在地球上观测到的宇宙线活动减弱。相反地,宇宙线流量的最大值往往出现在太阳耀斑等活动最小的时刻。观测也表明,绝大部分宇宙线是来自遥远的宇宙深处的超新星爆发。

因为宇宙线常常会因为星际磁场的作用而改变运动方向,我们很难判断它的辐射源在哪里。但宇宙线在与星际介质发生作用时,会辐射出г射线;而г射线是电磁波,运动方向不再受磁场的影响。美国宇航局曾发射了专门观测宇宙г射线的人造卫星。观测结果表明,宇宙г射线的分布与发现的超新星的分布有很好的相关性。这就在很大程度上支持了宇宙线来自超新星爆发的观点。

超新星事件和新星事件还有一个本质性的区别,即新星的爆发只发生在恒星的表面,而超新星爆发发生在恒星的深层,因此超新星爆发的规模要大的多。超新星爆发时散落到空间的物质,对新的星际介质乃至新的恒星的形成有着重要的贡献,但这些物质来自死亡恒星的外壳。

[编辑本段]超新星的研究用途

超新星处于许多不同天文学研究分支的交汇处。超新星作为许多种恒星生命的最后归宿,可用于检验当前的恒星演化理论。在爆炸瞬间以及在爆炸后观测到的现象涉及各种物理机制,例如中微子和引力波发射、燃烧传播及爆炸核合成、放射性衰变及激波同星周物质的作用等。而爆炸的遗迹如中子星或黑洞、膨胀气体云起到加热星际介质的作用。

超新星在产生宇宙中的重元素方面扮演着重要角色。大爆炸只产生了氢、氦以及少量的锂。 红巨星阶段的核聚变产生了各种中等质量元素(重于碳但轻于铁)。而重于铁的元素几乎都是在超新星爆炸时合成的,它们以很高的速度被抛向星际空间。此外,超新星还是星系化学演化的主要“代言人”。在早期星系演化中,超新星起了重要的反馈作用。星系物质丢失以及恒星形成等可能与超新星密切相关。

由于非常亮,超新星也被用来确定距离。将距离同超新星母星系的膨胀速度结合起来就可以确定哈勃常数以及宇宙的年龄。在这方面,Ia型超新星已被证明是强有力的距离指示器。最初是通过标准烛光的假定,后来是利用光变曲线形状等参数来标定化峰值光度。作为室女团以外最好的距离指示器,其校准后的峰值光度弥散仅为8%,并且能延伸到V> 30,000 km s-1的距离处。Ia 超新星的哈勃图(更确切地说是星等-红移关系)现在成为研究宇宙膨胀历史的最强有力的工具:其线性部分用于确定哈勃常数;弯曲部分可以研究膨胀的演化,如加速,甚至构成宇宙的不同物质及能量组分。利用Ia超新星可用作“标准烛光”的性质还可研究其母星系的本动。高红移Ia 超新星的光变曲线还可用于检验宇宙膨胀理论。可以预计由于宇宙膨胀而引起的时间膨胀效应将会表现在高红移超新星光变曲线上。 观测数据表明红移z处的Ia 超新星光变曲线宽度为z= 0处的 (1+z) 倍这为膨胀宇宙理论提供了又一个有力的支持。某些II型超新星也可用于确定距离。II-P型超新星在平台阶段抛射物的膨胀速度与它们的热光度存在相关,这也用来进行距离测定。经上述相关改正后,原来II-P型超新星V波段的~1星等的弥散可降到~03 星等的水平,这提供了另一种测独立于SN Ia的测定距离的手段。此外,II型超新星的射电发射也似乎具有可定量的性质,如6cm的光变曲线峰与爆炸后6cm峰出现的时间存在相关,这也可用来进行距离估计。

[编辑本段]超新星的命名惯例

当国际天文联合会收到发现超新星的报告后,他们都会为它命名。名字是由发现的年份和一至两个拉丁字母所组成:一年中首先发现的26颗超新星会用从A到Z的大写字母命名,如超新星1987A就是在1987年发现的第一颗超新星;而第二十六以后的则用两个小写字母命名,以aa、ab、ac这样的顺序起始[32]。专业和业余天文学家每年能发现几百颗超新星(2005年367颗,2006年551颗,2007年572颗),例如2005年发现的最后一颗超新星为SN 2005nc,表示它是2005年发现的第367颗超新星[nb 1][33][34]。

历史上的超新星则只需要按所发现的年份命名,如SN 185、SN 1006、SN 1054、SN 1572(第谷超新星)和SN 1604(开普勒超新星)。自1885年起开始使用字母命名,即使在那一年只有一颗超新星被发现(如SN 1885A和1907A等)。表示超新星的前缀SN有时也可以省略。

[编辑本段]发现

由于在一个星系中超新星是很少见的事件,银河系大约每隔50年发生一次,[6]为了得到良好的研究超新星的样本需要定期检测许多星系。

在其他星系的超新星无法准确地预测。通常情况下,当它们被发现时,过程已经开始。[22]对超新星最有科学意义的研究(如作为标准烛光来测量距离)需要观察其峰值亮度。因此,在它们达到峰值之前发现他们非常重要。业余天文学家的数量大大超过了专业天文学家,他们通常通过光学望远镜观察一些较近的星系,并和以前的相比较,在寻找超新星方面发挥了重要的作用。

到20世纪末期,天文学家越来越多转向用计算机控制的天文望远镜和CCD来寻找超新星。这种系统在业余天文学家中很流行,同时也有较大的设施,如卡茨曼自动成像望远镜(KAIT)。[23]最近,超新星早期预警系统(SNEWS)项目也已开始使用中微子探测器网络来早期预警银河系中超新星。[24][25]中微子是超新星爆炸时产生的大量的次原子粒子,[26]并且它不被银河系的星际气体和尘埃所吸收。

超新星的搜寻分为两大类:一些侧重于相对较近发生的事件,另一些则寻找更早期的爆炸。由于宇宙的膨胀,一个已知发射光谱的远程对象的距离可以通过测量其多普勒频移(或红移)来估计。平均而言,较远的物体比较近的物体以更大速度减弱,因此具有更高的红移。因此,搜寻分为高红移和低红移,其边界约为z = 01–03之间[27]——其中z是频谱频移的无量纲量度。

高红移的搜寻通常涉及到对超新星光度曲线的观测,这对于生成哈勃图以及进行宇宙学预测所用的标准或校准烛光很有用。在低红移端超新星的光谱比其在高红移端更有实用价值,并可用于研究超新星周围的物理与环境[28][29] 。低红移也可用于测定近距端的哈勃曲线,这是用来描述可见的星系距离与红移之间的关系曲线[30][31],参见哈勃定律。

[编辑本段]当前的模型

Ia型

这一类的超新星的形成途径有多种,但这些途径都共有一个相同的内在机制:如果一个以碳-氧[nb 2]为主要成分的白矮星吸积了足够多的物质并达到了约为138倍太阳质量的钱德拉塞卡极限[4](对于一个不发生自转的恒星而言),它将无法再通过电子简并压力[38][39]来平衡自身的引力从而会发生坍缩。不过,当今天体物理学界普遍认为在一般情形下这个极限是无法达到的:在坍缩发生之前随着白矮星内核温度和密度的不断上升,在白矮星质量达到极限的1%时就会引爆碳燃烧过程[40][4]。在几秒钟之内白矮星的相当一部分物质会发生核聚变,从中释放足够的能量(1-2×1044焦耳[41])而引起超新星爆发[42]。一束向外扩散的激波会由此产生并可达到5000-20000千米/秒的速度,其大约相当于光速的3%。同时恒星的光度会有非常显著的增加,绝对星等可达-193等(相当于比太阳亮五十亿倍),并且这一光度几乎不会变化[43] 。

研究此类超新星形成的模型之一是一个密近双星系统。双星中质量较大的一颗恒星在演化过程中会更早地离开主星序并膨胀为一颗红巨星[44]。随着双星的共同轨道的逐渐收缩,红巨星最终将其绝大多数外层物质向外喷射,直到它内部不能继续进行核聚变。此时它演化为一颗主要由碳和氧构成的白矮星[45][46]。其后系统中的另一颗恒星也将演化为红巨星,并且这颗红巨星的质量会被临近的白矮星吸积,使后者质量不断增长。在轨道足够接近的情形下,白矮星也有可能从包括主序星在内的其他类型的伴星吸积质量。

Ia型超新星爆发形成的另一种模型是两颗白矮星的合并,届时合并后的质量将有可能超过钱德拉塞卡极限[47],但此类情形较前者发生几率较低。

Ia型超新星具有特征性的光度曲线,在爆炸发生后它的光度是时间的函数。它所发出的光辐射来自内部从镍-56经钴-56到铁-56的放射性衰变所释放的能量[43]。现在一般认为那些由单一质量吸积形成的Ia型超新星的光度曲线普遍都具有一个相同的光度峰值,这使得它们可被辅助[48]用作天文学上的标准烛光,从而用于测量距它们宿主星系的距离[49]。不过,最近的观测表明它们的光度曲线的平均宽度也会发生一定的演化,这意味着Ia型超新星的固有光度也会发生变化,尽管这种变化在一个较大的红移尺度上才表现得较为显著[50]。

Ib和Ic型

这两类超新星的形成机制很可能类似于大质量恒星内部核反应燃料耗尽而形成II型超新星的过程;但有所不同的是,形成Ib或Ic型超新星的恒星由于强烈的恒星风或与其伴星的相互作用而失去了由氢元素构成的外层[53]。Ib型超新星被认为是大质量的沃尔夫-拉叶星坍缩后的产物。另外还有一些证据认为少量的Ic型超新星是伽玛射线暴的产生原因,但也有观点认为任何氢元素外层被剥离的Ib或Ic型超新星在爆炸的几何条件允许的情形下都有可能生成伽玛射线暴[54]。

II型

质量不小于九倍太阳质量的大质量恒星具有相当复杂的演化风格[5]。在恒星内核中的氢元素不断地通过核聚变产生氦元素,其中释放的能量会产生向外的辐射压,从而保证了内核的流体静力学平衡而避免恒星自身巨大的引力导致的坍缩。

而当恒星内核的氢元素消耗殆尽而无法再产生足够的辐射压来平衡引力时,内核的坍缩开始,这期间会使内核的温度和压力急剧升高并能够将氦元素点燃。由此恒星内核的氦元素开始聚变为碳元素,并能够产生相当的辐射压来中止坍缩。这使得内核膨胀并稍微冷却,此时的内核具有一个氢聚变的外层和一个更高温高压的氦聚变的中心。(其他元素如镁、硫、钙也会产生并在某些情形下在后续反应中燃烧。)

上述的过程会反复几次,每一次的内核坍缩都会由下一个更重的元素的聚变过程而中止,并不断地产生更高的温度和压力。星体由此变成了像洋葱一样的层状结构,越靠近外层的元素越容易发生聚变反应[55][56] 。每一层都依靠着其内部下一层的聚变反应所产生的热能和辐射压力来中止坍缩,直到这一层的聚变燃料消耗殆尽;并且每一层都比其外部一层的温度更高、燃烧更快——从硅到镍的燃烧过程只需要一天或几天左右的时间[57]。

在这样过程的后期,不断增加的重元素参与了核聚变,而生成的相关元素原子的结合能也在不断增加,从而导致聚变反应释放的能量不断减少。并且在更高的能量下内核会发生光致蜕变以及电子俘获过程,这都会导致内核的能量降低并一般会加速核聚变反应以保持平衡[57]。这种重元素的不断合成在镍-56处终止,这一聚变反应中不再有能量释放(但能够通过放射性衰变产生铁-56)[58] 这样的结果导致了这个镍-铁成分的内核[59]无法再产生任何能够平衡星体自身引力的向外的辐射压,而唯一能够起到一定平衡作用的是内核的电子简并压力。如果恒星的质量足够大,则这个内核的质量最终将有可能超过钱德拉塞卡极限,这样电子简并压力也不足以平衡引力坍缩。最终在星体自身强大的引力作用下,内核最内层的原本将原子核彼此分开的力也无法支撑,星体由此开始毁灭性的坍缩,并且此时已没有任何聚变反应能够阻止坍缩的发生[38]。

内核坍缩

超新星内核的坍缩速度可以达到每秒七万千米(约合023倍光速)[60],这个当原始恒星的质量低于大约20倍太阳质量(取决于爆炸的强度以及爆炸后回落的物质总量),坍缩后的剩余产物是一颗中子星[60];对于高于这个质量的恒星,剩余质量由于超过奥本海默-沃尔科夫极限会继续坍缩为一个黑洞[67](这种坍缩有可能是伽玛射线暴的产生原因之一,并且伴随着大量伽玛射线的放出在理论上也有可能产生再一次的超新星爆发)[68],理论上出现这种情形的上限大约为40-50倍太阳质量。

对于超过50倍太阳质量的恒星,一般认为它们会跳过超新星爆发的过程而直接坍缩为黑洞[69],不过这个极限由于模型的复杂性计算起来相当困难。但据最近的观测显示,质量极高(140-250倍太阳质量)并且所含重元素(相对氦元素而言)比例较低的恒星有可能形成不稳定对超新星而不会留下黑洞遗迹。这类相当罕见的超新星的形成机制可能并不相同(而可能部分类似于Ia型超新星爆发),从而很可能不需要铁核的存在[70][71]。这类超新星的典型代表是II型超新星SN 2006gy,据估计它具有150倍太阳质量,对它的观测表明如此巨大质量恒星的爆炸与先前的理论预测有着基础性的差异[70][72]。

过程会导致内核的温度和密度发生急剧增长。内核的这一能量损失过程终止于向外简并压力与向内引力的彼此平衡。在光致蜕变的作用下,γ射线将铁原子分解为氦原子核并释放中子,同时吸收能量;而质子和电子则通过电子俘获过程(不可逆β衰变)合并,产生中子和逃逸的中微子。

在一颗典型的II型超新星中,新生成的中子核的初始温度可达一千亿开尔文,这是太阳核心温度的六千倍。 如此高的热量大部分都需要被释放,以形成一颗稳定的中子星,而这一过程能够通过进一步的中微子释放来完成[61]。这些

泰坦新星为THELOSTCANVAS冥王神话中金牛座黄金圣斗士阿鲁迪巴(哈斯加特)的必杀技。属于超强物理攻击的招数。发招时能够产生恐怖的能量毁天灭地,把一切破坏,堪比超新星爆发。属于大范围毁灭的招式,但也能将能量压缩只破坏想要破坏的地方。泰坦新星的由来,哈斯加特在克里特岛执行任务时,与一个叫毕宿五的人偶发生战斗,他是此岛屿的守护者,而最终两人成为同伴一起战斗,毕宿五的必杀技是;神血新星ICHOR NOVA,哈斯加特当时的必杀技是;泰坦爆裂TITAN`S BREAK,在面对共同的敌人恩克拉多斯时,哈斯加特小宇宙大爆发,将两个必杀技融会贯通,创造出新的更刚猛的必杀技,泰坦新星TITAN`S NOVA

欢迎分享,转载请注明来源:表白网

原文地址:https://h5.hunlipic.com/xing/1004001.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-09-02
下一篇2023-09-02

发表评论

登录后才能评论

评论列表(0条)

    保存