阿基米德(公元前287年—公元前212年),伟大的古希腊哲学家、百科式科学家、数学家、物理学家、力学家,静态力学和流体静力学的奠基人,并且享有“力学之父”的美称,阿基米德和高斯、牛顿并列为世界三大数学家。 阿基米德曾说过:“给我一个支点,我就能撬起整个地球。”
阿基米德确立了静力学和流体静力学的基本原理。给出许多求几何图形重心,包括由一抛物线和其网平行弦线所围成图形的重心的方法。
阿基米德证明物体在液体中所受浮力等于它所排开液体的重量,这一结果后被称为阿基米德原理。他还给出正抛物旋转体浮在液体中平衡稳定的判据。
阿基米德发明的机械有引水用的水螺旋,能牵动满载大船的杠杆滑轮机械,能说明日食,月食现象的地球-月球-太阳运行模型。
但他认为机械发明比纯数学低级,因而没写这方面的著作。阿基米德还采用不断分割法求椭球体、旋转抛物体等的体积,这种方法已具有积分计算的雏形。
扩展资料:
杠杆原理
杠杆原理:满足下列三个点的系统,基本上就是杠杆:支点、施力点、受力点。杠杆原理亦称“杠杆平衡条件”:要使杠杆平衡,作用在杠杆上的两个力矩(力与力臂的乘积)大小必须相等。即:动力×动力臂=阻力×阻力臂,用公式可表达为:
(F1表示动力,l1表示动力臂,F2表示阻力,l2表示阻力臂)
海维隆王又遇到了一个棘手的问题:国王替埃及托勒密王造了一艘船,因为太大太重,船无法放进海里,国王就对阿基米德说:“你连地球都举得起来,把一艘船放进海里应该没问题吧?阿基米德叫工匠在船的前后左右安装了一套设计精巧的滑车和杠杆。
阿基米德叫100多人在大船前面,抓住一根绳子,他让国王牵动一根绳,大船居然慢慢地滑到海中。国王异常高兴,当众宣布:“从现在起,我要求大家,无论阿基米德说什么,都要相信他!”
参考资料:
首先令极坐标参数方程为:r = aθ
那么就可以得出笛卡尔坐标下的参数方程式为:
r=x(1+t)
x=rcos(t 360)
y=rsin(t 360)
z=0
扩展资料:
曲线的极坐标参数方程ρ=f(t),θ=g(t)。
圆的参数方程 x=a+r cosθ y=b+r sinθ(θ∈ [0,2π) ) (a,b) 为圆心坐标,r 为圆半径,θ 为参数,(x,y) 为经过点的坐标。
椭圆的参数方程 x=a cosθ y=b sinθ(θ∈[0,2π)),a为长半轴长,b为短半轴长,θ为参数。
双曲线的参数方程 x=a secθ (正割) y=b tanθ,a为实半轴长,b为虚半轴长,θ为参数。
抛物线的参数方程 x=2pt^2 y=2pt p表示焦点到准线的距离 t为参数。
直线的参数方程 x=x'+tcosa y=y'+tsina,x',y'和a表示直线经过(x',y'),且倾斜角为a,t为参数
或者x=x'+ut, y=y'+vt (t∈R)x',y'直线经过定点(x',y'),u,v表示直线的方向向量d=(u,v)
圆的渐开线x=r(cosφ+φsinφ) y=r(sinφ-φcosφ)(φ∈[0,2π)), r为基圆的半径,φ为参数。
- 阿基米德螺线
-参数方程
它的极坐标方程为:r = aθ 这种螺线的每条臂的距离永远相等于 2πa。 笛卡尔坐标方程式为:r=10(1+t) x=rcos(t360) y=rsin(t360) z=0 t就是时间!!!
欢迎分享,转载请注明来源:表白网
评论列表(0条)