双曲线的公式是什么?

双曲线的公式是什么?,第1张

标准方程为:

1、焦点在X轴上时为: (a>0,b>0)

2、焦点在Y 轴上时为: (a>0,b>0)

一般的,双曲线(希腊语“ὑπερβολή”,字面意思是“超过”或“超出”)是定义为平面交截直角圆锥面的两半的一类圆锥曲线。

它还可以定义为与两个固定的点(叫做焦点)的距离差是常数的点的轨迹。这个固定的距离差是a的两倍,这里的a是从双曲线的中心到双曲线最近的分支的顶点的距离。

a还叫做双曲线的实半轴。焦点位于贯穿轴上,它们的中间点叫做中心,中心一般位于原点处。

扩展资料:

特征介绍

分支

可以从图像中看出,双曲线有两个分支。当焦点在x轴上时,为左轴与右轴;当焦点在y轴上时,为上轴与下轴。

焦点

在定义1中提到的两个定点称为该双曲线的焦点,定义2中提到的一给定点也是双曲线的焦点。双曲线有两个焦点。焦点的横(纵)坐标满足c²=a²+b²。

准线

在定义2中提到的给定直线称为该双曲线的准线。

离心率

在定义2中提到的到给定点与给定直线的距离之比,称为该双曲线的离心率。

离心率

双曲线有两个焦点,两条准线。(注意:尽管定义2中只提到了一个焦点和一条准线,但是给定同侧的一个焦点,一条准线以及离心率可以根据定义2同时得到双曲线的两支,而两侧的焦点,准线和相同离心率得到的双曲线是相同的。)

顶点

双曲线和它的对称轴有两个交点,它们叫做双曲线的顶点。

实轴

两顶点之间的距离称为双曲线的实轴,实轴长的一半称为实半轴。

虚轴

在标准方程中令x=0,得y²=-b²,该方程无实根,为便于作图,在y轴上画出B1(0,b)和B2(0,-b),以B1B2为虚轴。

渐近线

双曲线有两条渐近线。渐近线和双曲线不相交。 

渐近线的方程求法是:将右边的常数设为0,即可用解二元二次的方法求出渐近线的解,例如:将1替换为0,得,则双曲线的渐近线为  。

一般地我们把直线叫做双曲线(焦点在X轴上)的渐近线(asymptotetothehyperbola)。

焦点在y轴上的双曲线的渐近线为  。顶点连线斜率 双曲线y上一点与两顶点连线的斜率之积为。

参考资料:---双曲线

设双曲线方程为

x^2/a^2-y^2/b^2=1

准线为x=a^2/c

一条渐进线方程为bx+ay=0

由题得焦点(c,0)到渐进线距离为b

x=a^2/c与bx+ay=0联立求解,解得y=ab/c

也就是准线被渐进线截的长度为2ab/c

所以2ab/c=b

两边平方,整理得 5e^2-e^4-4=0

所以e=2

那一步不懂call我。

推导如下:

假设x^2/a^2-y^2/b^2=1。

整理得y^2=b^2(x^2-a^2)/a^2,两边求导并取绝对值,得:

|y'|=|(b/a)(x/√(x^2-a^2))|=|(b/a)(1/√(1-(a^2/x^2))|(把y的方程代入)。

当x趋于无穷(x -> ∞),lim|y'|=b/a。

所以渐近线的斜率为±b/a。

即渐近线方程为y=±bx/a。

扩展资料:

双曲线性质

(1)范围:|x|≥a,y∈R。

(2)对称性:双曲线的对称性与椭圆完全相同,关于x轴、y轴及原点中心对称。

(3)顶点:两个顶点A1(-a,0),A2(a,0),两顶点间的线段为实轴,长为2a,虚轴长为2b,且c2=a2+b2。与椭圆不同。

(4)渐近线:双曲线特有的性质,方程y=±(b/a)x(当焦点在x轴上),y=±(a/b)x (焦点在y轴上)或令双曲线,x^2/a^2-y^2/b^2 =1中的1为零即得渐近线方程。

(5)离心率e>1,随着e的增大,双曲线张口逐渐变得开阔。

(6)等轴双曲线(等边双曲线):x^2-y^2=C其中C≠0,它的离心率e=c/a=√2。

(7)共轭双曲线:方程 x^2/a^2-y^2/b^2=1与x^2/a^2-y^2/b^2=-1 表示的双曲线共轭,有共同的渐近线和相等的焦距,但需注重方程的表达形式。

推导如下:

由双曲线方程:x^2/a^2-y^2/b^2=1,

当x≠0时,可得y/x=±√[(b^2/a^2)+(b/x)^2]

当x→±∞时,b/x=0 得 y/x=±√(b^2/a^2)  

即x→±∞得双曲线的渐近线方程为:

y=±bx/a

扩展资料

渐近线特点

无限接近,但不可以相交。分为垂直渐近线、水平渐近线和斜渐近线。

当曲线上一点M沿曲线无限远离原点时,如果M到一条直线的距离无限趋近于零,那么这条直线称为这条曲线的渐近线。

需要注意的是:并不是所有的曲线都有渐近线,渐近线反映了某些曲线在无限延伸时的变化情况。

根据渐近线的位置,可将渐近线分为三类:水平渐近线、垂直渐近线、斜渐近线。

y=k/x(k≠0)是反比例函数,其图象关于原点对称,x=0,y=0为其渐近线方程

当焦点在x轴上时 双曲线渐近线的方程是y=[±b/a]x

当焦点在y轴上时 双曲线渐近线的方程是y=[±a/b]x

-双曲线渐近线方程

双曲线渐近线方程,是一种几何图形的算法,这种主要解决实际中建筑物在建筑的时候的一些数据的处理。双曲线的主要特点:无限接近,但不可以相交。分为铅直渐近线、水平渐近线和斜渐近线。是一种根据实际的生活需求研究出的一种算法。

  渐近线特点:无限接近,但不可以相交。分为铅直渐近线、水平渐近线和斜渐近线。 当曲线上一点M沿曲线无限远离原点时,如果M到一条直线的距离无限趋近于零,那么这条直线称为这条曲线的渐近线。 需要注意的是:并不是所有的曲线都有渐近线,渐近线反映了某些曲线在无线延伸时的变化情况。 根据渐近线的位置,可将渐近线分为三类:水平渐近线、垂直渐近线、斜渐近线。 y=k/x(k≠0)是反比例函数,其图象关于原点对称,x=0,y=0为其渐近线方程 当焦点在x轴上时 双曲线渐近线的方程是y=[+(-)b/a]x 当焦点在y轴上时 双曲线渐近线的方程是y=[+(-)a/b]x 双曲线的简单几何性质 1双曲线 x^2/a^2-y^2/b^2 =1的简单几何性质 (1)范围:|x|≥a,y∈R (2)对称性:双曲线的对称性与椭圆完全相同,关于x轴、y轴及原点中心对称 (3)顶点:两个顶点A1(-a,0),A2(a,0),两顶点间的线段为实轴,长为2a,虚轴长为2b,且c2=a2+b2与椭圆不同 (4)渐近线:双曲线特有的性质,方程y=±b/ax,或令双曲线标准方程 x^2/a^2-y^2/b^2 =1中的1为零即得渐近线方程 (5)离心率e≥1,随着e的增大,双曲线张口逐渐变得开阔 (6)等轴双曲线(等边双曲线):x2-y2=a2(a≠0),它的渐近线方程为y=±b/ax,离心率e=c/a=√2 (7)共轭双曲线:方程 - =1与 - =-1表示的双曲线共轭,有共同的渐近线和相等的焦距,但需注重方程的表达形式 注重: 1与双曲线 - =1共渐近线的双曲线系方程可表示为 - =λ(λ≠0且λ为待定常数) 2与椭圆 =1(a>b>0)共焦点的曲线系方程可表示为 - =1(λ<a2,其中b2-λ>0时为椭圆, b2<λ<a2时为双曲线) 2双曲线的第二定义 平面内到定点F(c,0)的距离和到定直线l:x=+(-)a2/c 的距离之比等于常数e=c/a (c>a>0)的点的轨迹是双曲线,定点是双曲线的焦点,定直线是双曲线的准线,焦准距(焦参数)p= ,与椭圆相同 3焦半径( - =1,F1(-c,0)、F2(c,0)),点p(x0,y0)在双曲线 - =1的右支上时,|pF1|=ex0 a,|pF2|=ex0-a; P在左支上时,则 |PF1|=ex1+a |PF2|=ex1-a 本节学习要求: 学习双曲线的几何性质,可以用类比思想,即象讨论椭圆的几何性质一样去研究双曲线的标准方程,从而得出双曲线的几何性质,将双曲线的两种标准方程、图形、几何性质列表对比,便于把握 双曲线的几何性质与代数中的方程、平面几何的知识联系密切;直线与双曲线的交点问题、弦长间问题都离不开一元二次方程的判别式,韦达定理等;渐近线的夹角问题与直线的夹角公式三角函数中的相关知识,是高考的主要内容 通过本节内容的学习,培养同学们良好的个性品质和科学态度,培养同学们的良好的学习习惯和创新精神,进行辩证唯物主义世界观教育

双曲线的基本知识点渐近线是一种几何图形的算法,无限接近,但不可以相交,分为铅直渐近线、水平渐近线和斜渐近线。

双曲线渐近线方程主要解决实际中建筑物在建筑的时候的一些数据的处理。是一种根据实际的生活需求研究出的一种算法。

当曲线上一点M沿曲线无限远离原点时,如果M到一条直线的距离无限趋近于零,那么这条直线称为这条曲线的渐近线。需要注意的是:并不是所有的曲线都有渐近线,渐近线反映了某些曲线在无限延伸时的变化情况。根据渐近线的位置,可将渐近线分为三类:水平渐近线、垂直渐近线、斜渐近线。

y=k/x(k≠0)是反比例函数,其图象关于原点对称,x=0,y=0为其渐近线方程,当焦点在x轴上时,双曲线渐近线的方程是y=[+(-)b/a]x,当焦点在y轴上时,双曲线渐近线的方程是y=[+(-)a/b]x。

双曲线特征介绍:

1、分支:可以从图像中看出,双曲线有两个分支。当焦点在x轴上时,为左轴与右轴;当焦点在y轴上时,为上轴与下轴。

2、焦点:两个定点称为该双曲线的焦点,给定点也是双曲线的焦点。双曲线有两个焦点。焦点的横(纵)坐标满足c²=a²+b²。a表示双曲线右支的顶点位置 ,b表示虚轴的一半,c表示焦点位置。

3、准线:给定直线称为该双曲线的准线。

4、离心率:到给定点与给定直线的距离之比,称为该双曲线的离心率。

5、离心率:双曲线有两个焦点,两条准线。

6、顶点:双曲线和它的对称轴有两个交点,它们叫做双曲线的顶点。

7、实轴:两顶点之间的距离称为双曲线的实轴,实轴长的一半称为实半轴。

8、虚轴:在标准方程中令x=0,得y²=-b²,该方程无实根,为便于作图,在y轴上画出B1(0,b)和B2(0,-b),以B1B2为虚轴。

9、渐近线:双曲线有两条渐近线,渐近线和双曲线不相交。

欢迎分享,转载请注明来源:表白网

原文地址:https://h5.hunlipic.com/biaobai/3141815.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2024-02-08
下一篇2024-02-08

发表评论

登录后才能评论

评论列表(0条)

    保存