大质量的恒星在晚年为什么会爆炸呢?

大质量的恒星在晚年为什么会爆炸呢?,第1张

一些大质量的恒星,它的内部像一个巨大的不断燃烧着的热核反应炉。它们的里层,即星核以氢为燃料,氢燃料耗尽后,氦开始燃烧,其后是碳、氧,直到硅。每当恒星核心的一种燃料用完后,星核缺少能量时便开始收缩,收缩时释放出更大的引力能,使星核内部达到更高的温度,一直高到下一种燃料的点火温度,接着开始新的燃烧。到恒星的晚年,变得越来越不稳定,热核反应一轮接着一轮,温度越来越高,反应的速率一次比一次加快。当内部燃料耗尽、燃烧停止时,恒星的核心开始发生灾难性的坍缩,坍缩的过程极为短暂,几乎不到一秒钟。这突发的坍缩引起巨大的内部压力,就像突然用猛力挤压一个气球一样,逼迫着恒星星核的包层,包层被迅速加热,危及着包层内的“火药库”——氧、氢、氖等轻元素,这些轻元素正是恒星爆炸所需要的核燃料,最终导致了整个恒星爆炸,从而形成超新星爆炸。

有史以来,人类仅发现过6次银河系的超新星爆炸。到1988年止,人类发现河外星系中的超新星671颗。

超新星并不是“超级新生的星”,而是恒星演化过程中的一个关键阶段,有人把它称为恒星寿终前的“回光返照”。超新星的爆发比一般新星爆发强许多倍。一般新星爆炸后还可能再度出现,而超新星几乎要把整个星体爆炸掉,其爆发现象特别壮观,亮度可一下提高100亿倍。据我国史书记载:1054年金牛座超新星“昼见如太白,芒角四出,色赤红,凡见二十三日”。这颗超新星在东方天空出现时比金星还亮,白天都可以看到,如此罕见的天象持续了23天。700多年后,一位英国天文爱好者用望远镜在这颗超新星的位置上发现了一个螃蟹状的星云,这团气体正是1054年超新星的遗迹,而且这个星云仍在向外膨胀。

超新星爆发的激烈程度是让人难以置信的。据说它在几天内倾泻的能量,有一颗青年恒星在几亿年里所辐射那么多,以至它看上去就像一整个星系那样明亮!

新星或者超新星的爆发是天体演化中的重要环节。它是老年恒星辉煌的葬礼,同时又是新生恒星诞生的推动者。超新星的爆发可能会引发附近星云中无数颗恒星的诞生。另一方面,新星和超新星爆发的灰烬,也是形成别的天体的重要材料。有专家认为,今天我们地球上的许多物质元素就来自星空中那些早已消失的恒星。

对超新星及其物理现象的研究有助于全面研究天体的结构和演化规律。天文学家通过研究超新星的气体膨胀壳,以及它的亮度和温度,可以测量出超新星距离,进而推测出我们宇宙的大小。

因为这个星云的形状有点像螃蟹被取名为蟹状星云。这个星云是在1731年被英国的一位天文爱好者比维斯发现的。

根据中国历史记载,在现在蟹状星云的那个位置上,曾经有过超新星爆发,那就是1054年7月出现的、特亮的金牛座“天关客星”。它爆发过程中抛射出来的气体云,就应该是现在看到的蟹状星云。1921年,美国科学家把两批相隔12年的蟹状星云照片进行了仔细和反复的比较之后,确认星云的椭圆形外壳仍在高速膨胀,速度达到每秒1300千米。1942年,荷兰天文学家奥尔特以其令人信服的论证,确认蟹状星云就是1054年超新星爆发后形成的。

蟹状星云还是强红外源、紫外源、X射线源和γ射线源。它的总辐射光度的量级比太阳强几万倍。1968年发现该星云中的射电脉冲星,它的脉冲周期是00331秒,为已知脉冲星中周期最短的一个。目前已公认,脉冲星是快速自旋的中子星,有极强的磁性,是超新星爆发时形成的坍缩致密星。蟹状星云脉冲星的质量约为一个太阳质量,其发光气体的质量也约达一个太阳质量,可见该星云爆发前是质量比太阳大若干倍的大天体。星云距离约6300光年,星云大小约12光年×7光年。

公元1054年7月4日(宋仁宗至和元年五月二十六日)《宋史·天文志》记载:“客星出天关东南可数寸,岁余稍末”;《宋会要》中记载:“嘉佑元年三月,司天监言:‘客星没,客去之兆也’。初,至和元年五月,晨出东方,守天关,昼见如太白,芒角四出,色赤白,凡见二十三日”。这是关于一颗超新星的记载,它的残骸,就是我们现在看到的蟹状星云。

1888年出版《星云星团新总表》列为NGC1952,《梅西耶星团星云表》中列第一,代号M1。蟹状星云的名称是英国天文爱好者罗斯命名的。M1是最著名的超新星残骸。这颗位于金牛座的超新星爆发当时估计其绝对星等达到了-6等,相当于满月的亮度,它的实际光度比太阳高5亿倍,在白天也能看到,给当时的人们留下了极深刻的印象。不仅如此,它的遗迹星云至今的辐射也比太阳大,射电观测发现它的辐射强度和波长之间的关系不能用黑体辐射定律解释,要发射这样强的无线辐射,它的温度要在50万度以上,对一个扩散的星云来说,这是不可能的,前苏联天文学家什克洛夫斯基1953年提出,蟹状星云的辐射不是由于温度升高产生的,而是由“同步加速辐射”的机制造成的。这个解释已得到证实。蟹状星云中央脉冲星的发现,获得了1974年的“诺贝尔物理奖”,它是1982年前发现的周期最短的脉冲星,只有0033秒,并且直到现在,能够在所有电磁波段上观察到脉冲现象的只有它和另一颗很难观测的脉冲星。这颗高速自旋的脉冲星证明了30年代对中子星的预言,肯定了一种恒星演化理论:超新星爆发时,气体外壳被抛射出去,形成超新星遗迹,就象蟹状星云,而恒星核心却迅速坍缩,由恒星质量决定它的归宿是颗白矮星或是中子星或是黑洞。中子星内部没有热核反应,但它的能量却又大的惊人,比太阳大几十万倍,这样大的能量消耗,靠的是自转速度的变慢,即动能的减少来补偿,才能符合能量守恒定律。第一个被观测到的自转周期变长的中子星,恰好是M1中的中子星。总之,人类对蟹状星云的研究占了当代天文学研究的很大比重,也的确得到了相当比重的研究成果。

我们首先来看恒星的一生:

恒星的诞生

在星际空间普遍存在着极其稀薄的物质,主要由气体和尘埃构成。它们的温度约10~100K,密度约10-24~10-23g/cm3,相当于1cm3中有1~10个氢原子。星际物质在空间的分布并不是均匀的,通常是成块地出现,形成弥漫的星云。星云里3/4质量的物质是氢,处于电中性或电离态,其余约是氦以及极少数比氦更重的元素。在星云的某些区域还存在气态化合物分子,如氢分子、一氧化碳分子等。如果星云里包含的物质足够多,那么它在动力学上就是不稳定的。在外界扰动的影响下,星云会向内收缩并分裂成较小的团块,经过多次的分裂和收缩,逐渐在团块中心形成了致密的核。当核区的温度升高到氢核聚变反应可以进行时,一颗新恒星就诞生了。'

主序星

恒星以内部氢核聚变为主要能源的发展阶段就是恒星的主序阶段。处于主序阶段的恒星称为主序星。主序阶段是恒星的青壮年期,恒星在这一阶段停留的时间占整个寿命的90%以上。这是一个相对稳定的阶段,向外膨胀和向内收缩的两种力大致平衡,恒星基本上不收缩也不膨胀。恒星停留在主序阶段的时间随着质量的不同而相差很多。质量越大,光度越大,能量消耗也越快,停留在主序阶段的时间就越短。例如:质量等于太阳质量的15倍、5倍、1倍、02倍的恒星,处于主序阶段的时间分别为一千万年、七千万年、一百亿年和一万亿年。

目前的太阳也是一颗主序星。太阳现在的年龄为46亿多年,它的主序阶段已过去了约一半的时间,还要50亿年才会转到另一个演化阶段。与其他恒星相比,太阳的质量、温度和光度都大概居中,是一颗相当典型的主序星。主序星的很多性质可以从研究太阳得出,恒星研究的某些结果也可以用来了解太阳的某些性质。

红巨星与红超巨星

当恒星中心区的氢消耗殆尽形成由氦构成的核球之后,氢聚变的热核反应就无法在中心区继续。这时引力重压没有辐射压来平衡,星体中心区就要被压缩,温度会急剧上升。中心氦核球温度升高后使紧贴它的那一层氢氦混合气体受热达到引发氢聚变的温度,热核反应重新开始。如此氦球逐渐增大,氢燃烧层也跟着向外扩展,使星体外层物质受热膨胀起来向红巨星或红超巨星转化。转化期间,氢燃烧层产生的能量可能比主序星时期还要多,但星体表面温度不仅不升高反而会下降。其原因在于:外层膨胀后受到的内聚引力减小,即使温度降低,其膨胀压力仍然可抗衡或超过引力,此时星体半径和表面积增大的程度超过产能率的增长,因此总光度虽可能增长,表面温度却会下降。质量高于4倍太阳质量的大恒星在氦核外重新引发氢聚变时,核外放出来的能量未明显增加,但半径却增大了好多倍,因此表面温度由几万开降到三、四千开,成为红超巨星。质量低于4倍太阳质量的中小恒星进入红巨星阶段时表面温度下降,光度却急剧增加,这是因为它们外层膨胀所耗费的能量较少而产能较多。

预计太阳在红巨星阶段将大约停留10亿年时间,光度将升高到今天的好几十倍。到那时侯,地面的温度将升高到今天的两三倍,北温带夏季最高温度将接近100℃。

大质量恒星的死亡

大质量恒星经过一系列核反应后,形成重元素在内、轻元素在外的洋葱状结构,其核心主要由铁核构成。此后的核反应无法提供恒星的能源,铁核开始向内坍塌,而外层星体则被炸裂向外抛射。爆发时光度可能突增到太阳光度的上百亿倍,甚至达到整个银河系的总光度,这种爆发叫做超新星爆发。超新星爆发后,恒星的外层解体为向外膨胀的星云,中心遗留一颗高密天体。

金牛座里著名的蟹状星云就是公元1054年超新星爆发的遗迹。超新星爆发的时间虽短不及1秒,瞬时温度却高达万亿K,其影响更是巨大。超新星爆发对于星际物质的化学成分有关键影响,这些物质又是建造下一代恒星的原材料。

超新星爆发时,爆发与坍塌同时进行,坍塌作用使核心处的物质压缩得更为密实。理论分析证明,电子简并态不足以抗住大坍塌和大爆炸的异常高压,处在这么巨大压力下的物质,电子都被挤压到与质子结合成为中子简并态,密度达到10亿吨/立方厘米。由这种物质构成的天体叫做中子星。一颗与太阳质量相同的中子星半径只有大约10千米。

从理论上推算,中子星也有质量上限,最大不能超过大约3倍太阳质量。如果在超新星爆发后核心剩余物质还超过大约3倍太阳质量,中子简并态也抗不住所受的压力,只能继续坍缩下去。最后这团物质收缩到很小的时候,在它附近的引力就大到足以使运动最快的光子也无法摆脱它的束缚。因为光速是现知任何物质运动速度的极限,连光子都无法摆脱的天体必然能束缚住任何物质,所以这个天体不可能向外界发出任何信息,而且外界对它探测所用的任何媒介包括光子在内,一贴近它就不可避免地被它吸进去。它本身不发光并吞下包括辐射在内的一切物质,就象一个漆黑的无底洞,所以这种特殊的天体就被称为黑洞。黑洞有很多奇特的性质,对黑洞的研究在当代天文学及物理学中有重大的意义。

科学家发现,在木星和土星的表面散放出来的能量比它们所吸收的能量要多,这就意味着木星和土星也可以发光,只是它们发出的是远红外线而不是可见光而已。

长短不一,从几小时到几年吧。这个和它的类型有关。而且,嗯,持续的时候好像要定义的,比如光度变化为光极大的多少分之一或者星等变了多少。

比如,Ia型研究的比较透,光极大前差不多17天,之后还能持续百余天的光度衰减。

给你张不同类型的超新星的光变图吧:横坐标是时间(天),纵坐标是蓝光波段的绝对星等。不过即便是同一类型的超新星,其光变曲线也会有些小变化的。

参考资料里面也有比较科普性的叙述。

大爆炸说大爆炸:揭开宇宙的序幕约在150亿年前,发生了一次惊天动地的大爆炸—宇宙从此诞生了!当时的宇宙是一团密度非常大,温度几兆度的火球其中挤着很多粒子,互相撞来撞去这些粒子也就是构成宇宙中一切元素的基本单位。

大爆炸后,宇宙中组成星系的物质出现大爆炸时,氢核子就已经存在,大爆炸后不到一分钟,氦核子产生了约经过10万年,宇宙的温度逐渐降低,氢核子和氦核子分别和电子结合,成为氢原子和氦原子,他们就是组成星系的主要元素。

以我们的银河系为例,来看宇宙的形成散布在宇宙间的物质有疏有密,密的区域引力较大,会把附近的气体吸过来,越聚越多,成为大的气体团,并且慢慢收缩,这就是原始银河云。

我们的银河只是其中之一而已,银河中的太阳系银河里的物质的分布有密有疏,密集的地区会收缩凝聚,终于发光发热,星星便诞生了,太阳便是我们的银河系里2'000亿颗恒星中的一颗。

自从17世纪,英国科学家牛顿发现了万有引力,也就是宇宙间一切物体包括星星,太阳,月亮,行星和其他物体间都有相互的吸引力,物体质量越大,吸引力越大,物体间的距离增长,引力就会减弱,宇宙间所有的星系,星球的形成,都是万有引力控制,星际物质聚集形成星系,星球。

扩展资料:

星星的各种分类:

1、星星按种类分:恒星,行星,卫星,矮行星(此分类只在太阳系),小天体(小行星,彗星等)

2、恒星按阶段分:新星,主序星,红巨星,超新星(分为以下几种)-1白矮星,2中子星;3黑洞

3、恒星按大小分:(褐红)矮星,(蓝,蓝白,黄,红)巨星,(蓝,红)超巨星

4、恒星按光谱分:O、B、A、F、G、K、M及附加的R、N、S等类型

5、恒星按组合分:单星,双星,聚星和星团

参考资料:

-大爆炸宇宙论

-星星

欢迎分享,转载请注明来源:表白网

原文地址:https://h5.hunlipic.com/xing/2183843.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-11-28
下一篇2023-11-28

发表评论

登录后才能评论

评论列表(0条)

    保存