诗出李白明名篇《望庐山瀑布》
望庐山瀑布
[ 唐·李白 ]
日照香炉生紫烟,遥看瀑布挂前川。飞流直下三千尺,疑是银河落九天。
飞流直下三千尺,疑是银河落九天。该句是形容庐山瀑布的水流从三千尺的高处直泻而下,好像是璀璨的银河水落自九天,景象非常壮丽,宏伟博大。
外太空就是银河系
银河系(英文:Milky Way Galaxy),是太阳系所在的棒旋星系(漩涡星系的一种),呈椭圆盘形,具有巨大的盘面结构,最新研究表明银河系拥有四条清晰明确且相当对称的旋臂,旋臂相距4500光年。银河系的恒星数量约在1000亿到4000亿之间。
银河系整体作较差自转。在太阳处的自转速度约220千米/秒,太阳绕银心运转一周约25亿年。银河系的目视绝对星等为-205等,银河系的总质量大约是太阳质量的15万亿倍。银河系的年龄大概在100亿岁左右 ,而科学界认为宇宙大爆炸大约发生于138亿年前。银河系有两个伴星系:大麦哲伦星系和小麦哲伦星系。它们都是本星系群的成员,并且是室女超星系团的一部分;而它又是组成拉尼亚凯亚超星系团的一部分。
银河系自内向外分别由银心、银核、银盘、银晕和银冕组成。银河系中央区域多数为老年恒星(以白矮星为主),外围区域多数为新生和年轻的恒星。周围几十万光年的区域分布着十几个卫星星系,银河系通过缓慢地吞噬周边的矮星系使自身不断壮大。
银河经过25个星座:天鹅座、天鹰座、狐狸座、天箭座、蛇夫座、盾牌座、人马座、天蝎座、天坛座、矩尺座、豺狼座、南三角座、圆规座、苍蝇座、南十字座、船帆座、船尾座、麒麟座、猎户座、金牛座、双子座、御夫座、英仙座、仙后座和蝎虎座。
银河在天空中明暗不一,宽窄不等。最窄只有4°~5°,最宽约30°。然而,肉眼在天空各处看见的个别恒星,全都是银河系的一部分。来自这条带状弧上的光,都是源自银河平面上,肉眼不能解析的恒星和其它天体累积的光亮。对于北半球来说,银河夏季星空的重要标志,以及由3颗亮星,即银河两岸的织女星、牛郎星和银河之中的天津四所构成的“夏季大三角”。夏季的银河由天蝎座东侧向北伸展,横贯天空,气势磅礴,极为壮美。但只能在没有灯光干扰的野外(极限可视星等51以上) 才能欣赏到。冬季的银河很黯淡(在猎户座与大犬座),但在天空中可以看到明亮的猎户座,以及由天狼星、参宿四、南河三构成的明亮的“冬季大三角”。(注:此段所在视角均为北半球地区)
恒星的佛兰斯蒂德命名法与拜耳命名法类似,除了以数字取代希腊字母外,每颗恒星还是以数字和拉丁文所有格的星座名称结合在一起。在每一个星座中,数字起初是随著赤经的增加而增加,但是因为岁差影响,现在有些地方已经不合规定了。当现代的星座界限在草拟时,有些已经有佛氏编号的恒星被分割到没有被编号过的星座内,或是因为已经有了拜耳的名称,而省略了编号。
但需要特别注意的是佛氏编号只涵盖到在大不列颠可以看见的星星,因此偏向南天的星座都没有佛氏编号。(两个例外是球状星团杜鹃座47和邻近的波江座82。在佛兰斯蒂德的目录上有些错误的记载,例如,佛兰斯蒂德在1690年记录了天王星,但他没有认出那是颗行星,而将他登录为金牛座34。发现号航天飞机发现号航天飞机(STSDiscoveryOV-103)是美国国家航空航天局(NASA)肯尼迪太空中心(KSC)旗下,第三架实际执行太空飞行任务的航天飞机。
首次飞行是在1984年8月30日,迄今为止仍在服勤中,负责进行各种科学研究与作为国际太空站(InternationalSpaceStation,ISS)计划的支援。发现号将于2010年退役。美国宇航局(NASA)的“发现”号航天飞机当地时间23日在肯尼迪航天中心发射升空,飞往国际空间站,进行为期两周的航天使命。“发现”号上的7名宇航员将在国际空间站上安装一个新的太空舱,以扩展国际空间站的规模。
10月28日,宇航员斯科特·帕拉金斯基和丹尼尔·塔尼进行了第二次太空行走,为“和谐”节点舱安装外部组件、卸下一个厚重支架并检查国际空间站可能存在问题的设备。“发现号”此行的主要任务是运送和安装“和谐”节点舱,以便日后欧洲及日本的“哥伦布”和“希望”号实验舱能够与国际空间站进行对接,为空间站实验舱的发射做好前期准备。这是自2001年以来安装的首个新舱,对于国际空间站的扩大而言具有重要意义。
宿名星座 编号
毕宿一金牛座74 ε
毕宿二金牛座68
毕宿三金牛座61 δ
毕宿四金牛座54 γ
毕宿五金牛座87 α
毕宿六金牛座77 θ1
毕宿七金牛座71
毕宿八 金牛座 35 λ
附耳金牛座92 σ1
五车二御夫座13 α
五车五金牛座112 β 毕宿五为毕宿第五星,英文名Aldebaran,也是金牛座的主星,距离地球68光年。其光谱与光度分类属于K5 III型,呈橙色,在地球上的视星等为086,是夜空中的亮星之一。
毕宿五的直径约为5300万公里,是太阳直径的38倍。由于其内里的氢已经耗尽,毕宿五已由主序星演变为红巨星,靠燃烧氦来继续发光发热。
毕宿五有一个伴星,是一个视星等达11等的白矮星,肉眼不能看见,只能够用望远镜来观测。
1997年,人们透过观测,认为毕宿五可能有一个行星(也可能是棕矮星)存在,其质量约为木星的十一倍,距离毕宿五只有13天文单位。
美国国家航空航天局的无人太空船先锋10号,离开太阳系后朝着金牛座方向前进,如无意外,这艘太空船将在200万年后接近毕宿五。 五车二是位于御夫座的一个双星系统,西方名称为“Capella”及“御夫座α星”,其视星等为008等,绝对星等为-01等,是除了太阳外,全天第六亮的亮星。
该系统距离地球422光年,光谱类型属于G8III型,主星体积约为太阳的2750倍,约为伴星的54倍,主星与伴星的公转周期约为104年。 五车五为五车星第五星,是金牛座第二亮星(又称为金牛座β),视星等为17等。因为位于金牛座与御夫座的边界,所以在拜耳命名法中曾重复命名为为御夫座γ。
与太阳相比较,五车五含有相当丰富的锰,不过缺乏钙与镁。五车五已经开始离开主序带,将会变成一颗巨星。
当月球的升交点接近昼夜平分点时,月球将会遮掩五车五,而五车五在2007年时曾经被月球所掩。大部分的掩星只有在南半球可以观测到,这是因为五车五位于月掩区的北端,只有很罕见的情况下可以在加利福尼亚州南部观测得到。
九大行星是指水星、金星、地球、火星、木星、土星、天王星、海王星、冥王星。
水星
水星是太阳系中仅次于地球,密度第二大的天体。事实上地球的密度高部分源于万有引力的压缩;若非如此,水星的密度将大于地球,这表明水星的铁质核心比地球的相对要大些,很有可能构成了行星的大部分。因此,相对而言,水星仅有一圈薄薄的硅酸盐地幔和地壳。
巨大的铁质核心半径为1800到1900千米,是水星内部的支配者。而硅酸盐外壳仅有500到600千米厚,至少有一部分核心大概成熔融状。
水星的大气很稀薄,由太阳风带来的被破坏的原子构成。水星温度如此之高,使得这些原子迅速地散逸至太空中,这样与地球和金星稳定的大气相比,水星的大气频繁地被补充更换。
水星的表面表现出巨大的急斜面,有些达到几百千米长,三千米高。有些横处于环形山的外环处,而另一些急斜面的面貌表明他们是受压缩而形成的。据估计,水星表面收缩了大约01%。水星上最大的地貌特征之一是Calori 盆地,直径约为1300千米,人们认为它与月球上最大的盆地Maria相似。
如同月球的盆地,Calori盆地很有可能形成于太阳系早期的大碰撞中,那次碰撞大概同时造成了星球另一面正对盆地处奇特的地形。除了布满陨石坑的地形,水星也有相对平坦的平原,有些也许是古代火山运动的结果,但另一些大概是陨石所形成的喷出物沉积的结果。
金星
离太阳第二近的行星,太阳系中第六大行星。在所有行星中,金星的轨道最接近圆,偏差不到1%。
金星的自转非常不同寻常,一方面它很慢,另一方面它是倒转的。另外,金星自转周期又与它的轨道周期同步,所以当它与地球达到最近点时,金星朝地球的一面总是固定的。这是不是共鸣效果或只是一个巧合就不得而知了。
金星的大气压力为90个标准大气压,大气大多由二氧化碳组成,也有几层由硫酸组成的厚数千米的云层。这些云层挡住了我们对金星表面的观察,使得它看来非常模糊。这稠密的大气也产生了温室效应,使金星表面温度上升400度,超过了740开。
金星表面自然比水星表面热,虽然金星比水星离太阳要远两倍。云层顶端有强风,大约每小时350千米,但表面风速却很慢,每小时连几千米都不到。
地球
太阳系从内向外第三颗行星,也是太阳系第五大行星。
地壳的厚度不同,海洋处较薄,大洲下较厚。内核与地壳为实体;外核与地幔层为流体。不同的层由不连续断面分割开,这由地震数据得到;其中最有名的有数地壳与上地幔间的莫霍面-不连续断面了。
地球的大部分质量集中在地幔,剩下的大部分在地核;我们所居住的只是整体的一个小部分
地球的地壳由几个实体板块构成,各自在热地幔上漂浮。理论上称它为板块说。它被描绘为具有两个过程:扩大和缩小。扩大发生在两个板块互相远离,下面涌上来的岩浆形成新地壳时。缩小发生在两个板块相互碰撞,其中一个的边缘部份伸入了另一个的下面,在炽热的地幔中受热而被破坏。在板块分界处有许多断层,大洲板块间也有碰撞。
火星
距太阳第四远,也是太阳系中第七大行星,在中国古代又称荧火,因为火星呈红色,荧荧像火,亮度常有变化。
火星的两极永久地被固态二氧化碳覆盖着。这个冰罩的结构是层叠式的,它是由冰层与变化着的二氧化碳层轮流叠加而成。在北部的夏天,二氧化碳完全升华,留下剩余的冰水层。由于南部的二氧化碳从没有完全消失过,所以我们无法知道在南部的冰层下是否也存在着冰水层。
这种现象的原因还不知道,但或许是由于火星赤道面与其运行轨道之间的夹角的长期变化引起气候的变化造成的。或许在火星表面下较深处也有水存在。这种因季节变化而产生的两极覆盖层的变化使火星的气压改变了25%左右。
通过哈勃望远镜的观察却表明海盗号当时勘测时的环境并非是典型的情况。火星的大气似乎比海盗号勘测出的更冷、更干了。
木星
离太阳第五颗行星,而且是最大的一颗,比所有其他的行星的和质量大25倍(地球的318倍)。
木星表面云层的多彩可能是由大气中化学成分的微妙差异及其作用造成的,可能其中混入了硫的混合物,造就了五彩缤纷的视觉效果,但是其详情仍无法知晓。色彩的变化与云层的高度有关:最低处为蓝色,跟着是棕色与白色,最高处为红色。我们通过高处云层的洞才能看到低处的云层。
木星表面的大红斑早在300年前就被地球上的观察所知晓。大红斑是个长25,000千米,跨度12,000千米的椭圆,总以容纳两个地球。其他较小一些的斑点也已被看到了数十年了。
红外线的观察加上对它自转趋势的推导显示大红斑是一个高压区,那里的云层顶端比周围地区特别高,也特别冷。类似的情况在土星和海王星上也有。还不清楚为什么这类结构能持续那么长的一段时间。
土星
离太阳第六远的行星,也是八大行星中第二大的行星:
土星的内部是剧热的,并且土星向宇宙发出的能量比它从太阳获得的能量还要大。大多数的额外能量与木星一样是由Kelvin-Helmholtz原理产生的。但这可能还不足以解释土星的发光本领,一些其他的作用可能也在进行,可能是由于土星内部深层处氦的“冲洗”造成的。
土星的光环特别地薄,尽管它们的直径有250,000千米甚至更大,但是它们最多只有15千米厚。尽管它们有给人深刻印象的明显的形象,但是在光环中只有很少的物质--如果光环被压缩成一个物件,它最多只可能是100千米宽。
光环中的微粒可能主要是由水凝成的冰组成,但它们也可能是由冰裹住外层的岩石状微粒。
天王星
太阳系中离太阳第七远行星,从直径来看,是太阳系中第三大行星。天王星的体积比海王星大,质量却比其小。
天王星是由岩石和各种各样的冰组成的,它仅含有15%的氢和一些氦。天王星和海王星在许多方面与木星和土星在去掉巨大液态金属氢外壳后的内核很相象。虽然天王星的内核不像木星和土星那样是由岩石组成的,但它们的物质分布却几乎是相同的。
天王星的大气层含有大约83%的氢,15%的氦和2%的甲烷。如其他所有的气态行星一样,天王星也有带状的云围绕着它快速飘动。但是它们太微弱了,以至只能由旅行者2号经过加工的才可看出。由哈博望远镜的观察显示的条纹却更大更明显。据推测,这种差别主要是由于季节的作用而产生的。
海王星
环绕太阳运行的第八颗行星,也是太阳系中第四大天体。海王星在直径上小于天王星,但质量比它大。
作为典型的气体行星,海王星上呼啸着按带状分布的大风暴或旋风,海王星上的风暴是太阳系中最快的,时速达到2000千米。和土星、木星一样,海王星内部有热源--它辐射出的能量是它吸收的太阳能的两倍多。
海王星也有光环。在地球上只能观察到暗淡模糊的圆弧,而非完整的光环。但旅行者2号的图像显示这些弧完全是由亮块组成的光环。其中的一个光环看上去似乎有奇特的螺旋形结构。
同天王星和木星一样,海王星的光环十分暗淡,但它们的内部结构仍是未知数。人们已命名了海王星的光环:最外面的是Adams,其次是一个未命名的包有Galatea卫星的弧,然后是Leverrier,最里面暗淡但很宽阔的叫Galle。
扩展资料:
冥王星(被除名)
历史上曾经认为,冥王星是离太阳最远而且是最小的行星,在希腊神话中象征冥王哈迪斯,是宙斯的哥哥,被弟弟夺去王位后,堕落到冥界。冥王星有三颗卫星。
太阳系中有七颗卫星比冥王星大(月球,木卫一,木卫二,木卫三,木卫四,土卫六 和 海卫一)。
冥王星于1930年由美国天文学家克莱德汤博发现。其先前之所以能被划入行星之列,是因为人们最初曾误认为其尺寸与地球相当。
冥王星是九大行星中体积最小的一个,而且比那八颗行星要小得多。冥王星直径仅为2300公里左右,比地球的卫星还小。它的轨道也非常特别,与其它八颗行星运转的轨道有一个角度。尤其是在2003年发现“齐娜”后,冥王星的地位遭到了进一步的动摇。
“齐娜”的直径约为3000公里,和太阳之间的距离大约是冥王星和太阳间距离的3倍,绕行太阳一周得花560年。美国加州技术研究所的科学家在柯伊伯带发现了它,并将其编号为UB313。经过两年的观察,他们在2003年7月向外界公布了这一发现,并引起太阳系是否存在第十大行星的热烈讨论。
冥王星起初被认为是太阳系中的一颗大行星,但是在2006年8月24日于布拉格举行的第26届国际天文联会中通过第五号决议,将冥王星划为矮行星。在2008年6月,国际天文学会再将冥王星做为子分类类冥矮行星的原型。
20世纪90年代以来,天文学家发现柯伊伯带有更多围绕太阳运行的大天体。比如,美国天文学家布朗发现的“2003UB313”,就是一个直径和质量都超过冥王星的天体。因此,从“九大行星”改为“八大行星”就不难理解了。
九大行星在各自的轨道上不停地围绕着太阳运转,它们的轨道大小不同,运行的速度和周期也不一样,通常它们散布在太阳系的不同区域中。经过一定的时期,九颗行星会同时运行到太阳的一侧,汇聚在一个角度不大的扇形区域中,人们把这一现象称为“联珠”。
-九大行星
您好,很高兴回答您的问题:
由阿尔伯特·爱因斯坦提出该理论。简单地说,“虫洞”就是连接宇宙遥远区域间的时空细管。暗物质维持着虫洞出口的敞开。虫洞可以把平行宇宙和婴儿宇宙连接起来,并提供时间旅行的可能性。虫洞也可能是连接黑洞和白洞的时空隧道,所以也叫"灰道"。虫洞[1],英文为:Wormhole。
虫洞
虫洞(Wormhole),又称爱因斯坦-罗森桥,是宇宙中可能存在的连接两个不同时空的狭窄隧道。虫洞是1930年代由爱因斯坦及纳森·罗森在研究引力场方程时假设的,认为透过虫洞可以做瞬时间的空间转移或者做时间旅行。截至2013年其存在性尚未确认。早在19世纪50年代,已有科学家对“虫洞”作过研究,由于当时历史条件所限,一些物理学家认为,理论上也许可以使用“虫洞”,但“虫洞”的引力过大,会毁灭所有进入的东西,因此不可能用在宇宙航行上。“瞬间移动”的可能,如同超时空转换。随着科学技术的发展,新的研究发现,“虫洞”的超强力场可以通过“负能量”来中和,达到稳定“虫洞”能量场的作用。科学家认为,相对于产生能量的“正物质”,“反物质”也拥有“负质量”,可以吸去周围所有能量。像“虫洞”一样,“负质量”也曾被认为只存在于理论之中。不过,目前世界上的许多实验室已经成功地证明了“负质量”能存在于现实世界,并且通过航天器在太空中捕捉到了微量的“负质量”。虫洞(15张)据科学家猜测,宇宙中充斥着数以百万计的“虫洞”,但很少有直径超过10万公里的,而这个宽度正是太空飞船安全航行的最低要求。“负质量”的发现为利用“虫洞”创造了新的契机,可以使用它去扩大和稳定细小的“虫洞”。 科学家指出,如果把“负质量”传送到“虫洞”中,把“虫洞”打开,并强化它的结构,使其稳定,就可以使太空飞船通过。
虫洞
虫洞的概念最初产生于对史瓦西解的研究中。物理学家在分析白洞解的时候,通过一个阿尔伯特·爱因斯
坦的思想实验,发现宇宙时空自身可以不是平坦的。如果恒星形成了黑洞,那么时空在史瓦西半径,也就是视界的地方与原来的时空垂直。在不平坦的宇宙时空中,这种结构就意味着黑洞视界内的部分会与宇宙的另一个部分相结合,然后在那里产生一个洞。这个洞可以是黑洞,也可以是白洞。而这个弯曲的视界,就叫做史瓦西喉,它就是一种特定的虫洞。自从在史瓦西解中发现了虫洞,物理学家们就开始对虫洞的性质发生了兴趣。虫洞连接黑洞和白洞,在黑洞与白洞之间传送物质。在这里,虫洞成为一个阿尔伯特·爱因斯坦—罗森桥,物质在黑洞的奇点处被完全瓦解为基本粒子,然后通过这个虫洞(即阿尔伯特·爱因斯坦—罗森桥)被传送到白洞并且被辐射出去。虫洞还可以在宇宙的正常时空中显现,成为一个突然出现的超时空管道。理论推出的虫洞还有许多特性,限于篇幅,这里不再赘述。总之,目前我们对黑洞、白洞和虫洞的本质了解还很少,它们还是神秘的东西,很多问题仍需要进一步探讨。目前天文学家已经间接地找到了黑洞,但白洞、虫洞并未真正发现,还只是一个经常出现在科幻作品中的理论名词。虫洞也是霍金构想的宇宙期存在的一种极细微的洞穴。美国科学
虫洞
家对此做了深入的研究。目前的宇宙中,“宇宙项”几乎为零。所谓的宇宙项也称为“真空的能量”,在没有物质的空间中,能量也同样存在其内部,这是由爱因斯坦所导入的。宇宙初期的膨胀宇宙,宇宙项是必须的,而且,在基本粒子论里,也认为真空中的能量是自然呈现的。那么,为何目前宇宙的宇宙项变为零呢?柯尔曼说明:在爆炸以前的初期宇宙中,虫洞连接着很多的宇宙,很巧妙地将宇宙项的大小调整为零。结果,由一个宇宙可能产生另一个宇宙,而且,宇宙中也有可能有无数个这种微细的洞穴,它们可通往一个宇宙的过去及未来,或其他的宇宙。旋转的或带有电荷的黑洞内部连接一个相应的白洞,你可以跳进黑洞而从白洞中跳出来。这样的黑洞和白洞的组合叫做虫洞。最后,即使虫洞存在并且是稳定的,穿过它们也是十分不愉快的。贯穿虫洞的辐射(来自附近的恒星,宇宙的微波背景等等)将蓝移到非常高的频率。当你试着穿越虫洞时,你将被这些X射线和伽玛射线烤焦。虫洞的出现,几乎可以说是和黑洞同时的。编辑本段相关理论虫洞有几种说法:一是空间中的隧道,它就像一个球体,你要是沿球面走就远了。但如果你走的是球里的一条直径就近了,虫洞就是直径。二是黑洞与白洞的联系。黑洞可以产生一个势阱,白洞则可以产生一个反势阱。宇宙是三维的,将势阱看作第四维,那么虫洞就是连接势阱和反势阱的第五维。假如画出宇宙、势阱、反势阱和虫洞的图像,它就像一个克莱因瓶——瓶口是黑洞,瓶身和瓶颈的交界处是白洞,瓶颈是虫洞。三是你说的时间隧道,根据爱因斯坦所说的你可以进行时间旅行,但你只能看,就像看**,却无法改变发生的事情,因为时间是线性的,事件就是一个个珠子已经穿好,你无法改变珠子也无法调动顺序。到现在为止,我们讨论的都是普通“完美”黑洞。细节上,我们讨论的黑洞都不旋转也没有电荷。如果我们考虑黑洞旋转同时/或者带有电荷,事情会变的更复杂。特别的是,你有可能跳进这样的黑洞而不撞到奇点。结果是,旋转的或带有电荷的黑洞内部连接一个相应的白洞,你可以跳进黑洞而从白洞中跳出来。这样的黑洞和白洞的组合叫做虫洞。白洞有可能离黑洞十分远;实际上它甚至有可能在一个“不同的宇宙”--那就是,一个时空区域,除了虫洞本身,完全和我们在的区域没有连接。一个位置方便的虫洞会给我们一个方便和快捷的方法去旅行很长一段距离,甚至旅行到另一个宇宙。或许虫洞的出口停在过去,这样你可以通过它而逆着时间旅行。总的来说,它们听起来很酷。 但在你认定那个理论正确而打算去寻找它们之前,你因该知道两件事。首先,虫洞几乎不存在。正如我们上面我们说到白洞时,只因为它们是方程组有效的数学解并不表明它们在自然中存在。特别的,当黑洞由普通物质坍塌形成(包括我们认为存在的所有黑洞)并不会形成虫洞。如果你掉进其中的一个,你并不会从什么地方跳出来。你会撞到奇点,那是你唯一可去的地方。还有,即使形成了一个虫洞,它也被认为是不稳定的。即使是很小的扰动(包括你尝试穿过它的扰动)都会导致它坍塌。 在史瓦西发现了史瓦西黑洞以后,理论物理学家们对爱因斯坦常方程的史瓦西解进行了几乎半个世纪的探索。包括上面说过的克尔解、雷斯勒——诺斯特朗姆解以及后来的纽曼解,都是围绕史瓦西的解研究出来的成果。我在这里将介绍给大家的虫洞,也是史瓦西的后代。虫洞在史瓦西解中第一次出现,是当物理学家们想到了白洞的时候。他们通过一个爱因斯坦的思想实验,发现时空可以不是平坦的,而是弯曲的。在这种情况下,我们会十分惊奇的发现,如果恒星形成了黑洞,那么时空在史瓦西半径,也就是视界的地方是与原来的时空完全垂直的。在不是平坦的宇宙时空中,这种结构就以为着黑洞的视界内的部分会与宇宙的另一个部分相结合,然后在那里产生一个洞。这个洞可以是黑洞,也可以是白洞。而这个弯曲的视界,叫史瓦西喉,也就是一种特定的虫洞。 自从在史瓦西解中发现了虫洞,物理学家们就开始对虫洞的性质感到好奇。我们先来看一个虫洞的经典作用:连接黑洞和白洞,成为一个爱因斯坦——罗森桥,将物质在黑洞的奇点处被完全瓦解为基本粒子,然后通过这个虫洞(即爱因斯坦——罗森桥)被传送到这个白洞的所在,并且被辐射出去。
虫洞示意图
黑洞和黑洞之间也可以通过虫洞连接,当然,这种连接无论是如何的将强,它还是仅仅是一个连通的“宇宙监狱”。虫洞不仅可以作为一个连接洞的工具,它还在宇宙的正常时空中出现,成为一个突然出现在宇宙中的超空间管道。虫洞没有视界,它有的仅仅是一个和外界的分解面。虫洞通过这个分解面和超空间连接,但是在这里时空曲率不是无限大。就好比在一个在平面中一条曲线和另一条曲线相切,在虫洞的问题中,它就好比是一个四维管道和一个三维的空间相切,在这里时空曲率不是无限大。因而我们现在可以安全地通过虫洞,而不被巨大的引力所摧毁。编辑本段虫洞性质利用相对论在不考虑一些量子效应和除引力以外的任何能量的时候,我们得到了一些十分简单、基本的关于虫洞的描述。这些描述十分重要,但是由于我们研究的重点是黑洞,而
不是宇宙中的洞,因此我在这里只简单介绍一下虫洞的性质,而对于一些相关的理论以及这些理论的描述,这里先不涉及。虫洞有些什么性质呢?最主要的一个,是相对论中描述的,用来作为宇宙中的高速火车。但是,虫洞的第二个重要的性质,也就是量子理论告诉我们的东西又明确的告诉我们:虫洞不可能成为一个宇宙的高速火车。虫洞的存在,依赖于一种奇异的性质和物质,而这种奇异的性质,就是负能量。只有负能量才可以维持虫洞的存在,保持虫洞与外界时空的分解面持续打开。当然,狄拉克在芬克尔斯坦参照系的基础上,发现了参照系的选择可以帮助我们更容易或者难地来分析物理问题。同样的,负能量在狄拉克的另一个参照系中,是非常容易实现的,因为能量的表现形式和观测物体的速度有关。这个结论在膜规范理论中同样起到了十分重要的作用。根据参照系的不同,负能量是十分容易实现的。在物体以近光速接近虫洞的时候,在虫洞的周围的能量自然就成为了负的。因而以接近光速的速度可以进入虫洞,而速度离光速太大,那么物体是无论如何也不可能进入虫洞的。这个也就是虫洞的特殊性质之一。编辑本段生产机制自然产生机制虫洞的自然产生机制有两种:其一,是黑洞的强大引力能。其二,是克尔黑洞的快速旋转,其伦斯——梯林效应将黑洞周围的能层中的时空撕开一些小口子。这些小口子在引力能和旋转能的作用下被击穿,成为一些十分小的虫洞。这些虫洞在黑洞引力能的作用下,可以确定它们的出口在那里,但是现在还不可能完全完成,因为量子理论和相对论还没有完全结合。个人假设1虫洞像河流,通过的物体像船,船顺河而下。2虫洞体像一个圆柱形磁铁,强力的类磁力线在入口处将通过的物体分解,以波的形式在柱心管道运行,在出口处还原。通过的物体类似一个障碍,造成波的某一部分形变,然后这个形变推移到出口。可能还涉及到横波、纵波,波的反射、折射、衍射,物质的不均匀、空间的不规则,如同水中气泡般的宇宙空洞。3虫洞像一个圆柱形隧道,通过时间扭曲,把物体吸入里面,进行太空旅行。编辑本段相关言论星空最后的前沿探索星空是人类一个恒久的梦想。 在晴朗的夜晚,每当我们仰起头来, 就会看到满天的繁星。自古以来, 星空以它无与伦比的浩瀚、深邃、 美丽及神秘激起着人类无数的遐想。著名的美国科幻电视连续剧《星际旅行》(Star Trek) 中有这样一句简短却意味无穷的题记:星空, 最后的前沿(Space, the final frontier)[注一]。当我第一次观看这个电视连续剧的时候, 这句用一种带有磁性的话外音念出的题记给我留下了令人神往的印象。在远古的时候, 人类探索星空的方式是肉眼,后来开始用望远镜, 但人类迈向星空的第一步则是在一九五七年。那一年, 人类发射的第一个航天器终于飞出了我们这个蓝色星球的大气层。十二年后, 人类把足迹留在了月球上。三年之后, 人类向外太阳系发射了先驱者十号深空探测器。一九八三年, 先驱者十号飞离了海王星轨道,成为人类发射的第一个飞离太阳系的航天器[注二]。 从人类发射第一个航天器以来,短短二十几年的时间里, 齐奥尔科夫斯基所预言的“人类首先将小心翼翼地穿过大气层, 然后再去征服太阳周围的整个空间”就成为了现实, 人类探索星空的步履不可谓不迅速。但是, 相对于无尽的星空而言,这种步履依然太过缓慢。 率先飞出太阳系的先驱者十号如今正在一片冷寂的空间中滑行着,在满天的繁星之中, 要经过多少年它才能飞临下一颗恒星呢?答案是两百万年! 那时它将飞临距离我们六十八光年的金牛座(Taurus)[注三]。六十八光年的距离相对于地球上的任何尺度来说都是极其巨大的, 但是相对于远在三万光年之外的银河系中心,远在两百二十万光年之外的仙女座大星云,远在六千万光年之外的室女座星系团,以及更为遥远的其它天体来说无疑是微不足道的。人类的好奇心是没有边界的, 可是即便人类航天器的速度再快上许多倍,甚至接近物理速度的上限 - 光速,用星际空间的距离来衡量依然是极其缓慢的。 那么,有没有什么办法可以让航天器以某种方式变相地突破速度上限, 从而能够在很短的时间内跨越那些近乎无限的遥远距离呢?科幻小说家们率先展开了想象的翅膀。旅行家的天堂一九八五年, 美国康乃尔大学(Cornell University) 的著名行星天文学家卡尔· 萨根(Carl Sagan) 写了一部科幻小说,叫做《接触》 (Contact)。萨根对探索地球以外的智慧
生物有着浓厚的兴趣,他客串科幻小说家的目的之一是要为寻找外星智慧生物的 SETI 计划筹集资金。他的这部小说后来被拍成了**, 为他赢得了广泛的知名度。萨根在他的小说中叙述了一个动人的故事: 一位名叫艾丽(Ellie) 的女科学家收到了一串来自外星球智慧生物的电波信号。经过研究, 她发现这串信号包含了建造一台特殊设备的方法,那台设备可以让人类与信号的发送者会面。 经过努力,艾丽与同事成功地建造起了这台设备, 并通过这台设备跨越了遥远的星际空间与外星球智慧生物实现了第一次接触。但是, 艾丽与同事按照外星球智慧生物提供的方法建造出的设备究竟利用了什么方式让旅行者跨越遥远的星际空间的呢?这是萨根需要大胆 “幻想”的地方。 他最初的设想是利用黑洞。但是萨根毕竟不是普通的科幻小说家, 他的科学背景使他希望自己的科幻小说尽可能地不与已知的物理学定律相矛盾。于是他给自己的老朋友, 加州理工大学(California Institute of Technology) 的索恩(Kip S Thorne) 教授打了一个电话。索恩是研究引力理论的专家, 萨根请他为自己的设想做一下技术评估。索恩经过思考及粗略的计算, 很快告诉萨根黑洞是无法作为星际旅行的工具的,他建议萨根使用虫洞 (wormhole) 这个概念。据我所知, 这是虫洞这一名词第一次进入科幻小说中[注四]。在那之后, 各种科幻小说、**、 及电视连续剧相继采用了这一名词,虫洞逐渐成为了科幻故事中的标准术语。 这是科幻小说家与物理学家的一次小小交流结出的果实。萨根与索恩的交流不仅为科幻小说带来了一个全新的术语, 也为物理学开创了一个新的研究领域。在物理学中, 虫洞这一概念最早是由米斯纳(C W Misner) 与惠勒(J A Wheeler) 于一九五七年提出的,与人类发射第一个航天器恰好是同一年。 那么究竟什么是虫洞?它又为什么会被科幻小说家视为星际旅行的工具呢? 让我们用一个简单的例子来说明:大家知道, 在一个苹果的表面上从一个点到另一个点需要走一条弧线,但如果有一条蛀虫在这两个点之间蛀出了一个虫洞, 通过虫洞就可以在这两个点之间走直线,这显然要比原先的弧线来得近。 把这个类比从二维的苹果表面推广到三维的物理空间,就是物理学家们所说的虫洞, 而虫洞可以在两点之间形成快捷路径的特点正是科幻小说家们喜爱虫洞的原因[注五]。只要存在合适的虫洞, 无论多么遥远的地方都有可能变得近在咫尺,星际旅行家们将不再受制于空间距离的遥远。在一些科幻故事中, 技术水平高度发达的文明世界利用虫洞进行星际旅行就像今天的我们利用高速公路在城镇间旅行一样。在著名的美国科幻**及电视连续剧《星际之门》(Stargate,港台译 星际奇兵) 中人类利用外星文明留在地球上的一台被称为“星际之门” 的设备可以与其它许多遥远星球上的“星际之门” 建立虫洞连接,从而能够几乎瞬时地把人和设备送到那些遥远的星球上。 虫洞成为了科幻故事中星际旅行家的天堂。不过米斯纳与惠勒所提出的虫洞是极其微小的, 并且在极短的时间内就会消失,无法成为星际旅行的通道。 萨根的小说发表之后,索恩对虫洞产生了浓厚的兴趣, 并和他的学生莫里斯(Mike Morris) 开始对虫洞作深入的研究。与米斯纳和惠勒不同的是, 索恩感兴趣的是可以作为星际旅行通道的虫洞,这种虫洞被称为可穿越虫洞 (traversable wormhole)。负能量物质么什么样的虫洞能成为可穿越虫洞呢?一个首要的条件就是它必须存在足够
虫洞美景图(5张)
编辑本段理论形成
虫洞
虫洞虫洞的概念最初产生于对史瓦西解的研究中。物理学家在分析白洞解的时候,通过一个阿尔伯特・爱因斯坦的思想实验,发现宇宙时空自身可以不是平坦的。如果恒星形成了黑洞,那么时空在史瓦西半径,也就是视界的地方与原来的时空垂直。在不平坦的宇宙时空中,这种结构就意味着黑洞视界内的部分会与宇宙的另一个部分相结合,然后在那里产生一个洞。这个洞可以是黑洞,也可以是白洞。而这个弯曲的视界,就叫做史瓦西喉,它就是一种特定的虫洞。自从在史瓦西解中发现了虫洞,物理学家们就开始对虫洞的性质发生了兴趣。“虫洞”的由来“虫洞”由两位海外归国的家长创立。在国外的生活中,他们强烈体会到:先进国家的教育注重情商、智商双向培养,关注孩子们独立探索和实践的能力。他们认为:这种教育才是创新的摇篮。 我认为呢,你的要求我都达到了,也确实有高清希望您能采纳!!!!并不矛盾,昂星团确实是在金牛座附近,距离我们的太阳系也远比猎户座要靠近得多,所以太阳系是绕昂宿星团公转的。
而之所以为什么说我们是在猎户座的旋臂上那是因为整个银河系是一个圆盘状的漩涡星系,从最中心的银心开始向外围延伸出去还有很多条旋臂,依次是银心,银盘,两千秒差距膨胀环,三千秒差距臂,矩尺内臂,半人马臂,人马臂,猎户臂,英仙臂和英仙外臂。而我们太阳系与金牛座和猎户座都存在于猎户臂上。
快速发展的汽车业,带来了不断创新的各种“神车”,琳琅满目。丰田凯美瑞“兼容并包”的运动和家居风格,成为家喻户晓的车型。弯曲之王昂克赛拉,俨然成了成功者的座驾。在车水马龙的世界里,只有那些真正满足每个人需求的车,才能赢得一席之地。如同福特金牛座。
金牛座的车头采用圆润的线条勾勒出一个简约的前脸造型,整体十分沉稳大气,配合多幅式进气格栅,让车头感觉比较协调。配备了LED日间行车灯、自动头灯、大灯高度可调、大灯延时关闭。
金牛座的尺寸为5018/1884/1506mm,轴距为2949mm。外部配置方面,配备了外后视镜电动调节、外后视镜加热、外后视镜电动折叠、外后视镜锁车自动折叠、内后视镜自动防眩目。
金牛座配备的是米其林轮胎,前后轮胎标配规格均为235/50 R18,轮圈采用了多辐式设计。
金牛座车尾采用了流畅的线条,看起来比较圆润,排气方面,该车采用了双边共双出的布局,尾灯造型虽然朴素,但内部结构还算精致。
内部布局非常简洁。觉得有很大的提升空间,做工和德系比肩明显处于劣势,看上去很整洁,各种功效按键设置也很合理,本来就觉得味道比较大,没想到第三天开车基本上没什么味道。
太空无关紧要,超级大,怎么说?杯架也可以设计得很合理,杯槽也挺多,前后排伸腿不受任何压力,比福特福克斯后排更强,车内空间更大,手套箱更深,另外,后尾箱更大,一家人长假旅行完全没有压力。
此价格有此舒适性很不错,与丰田亚洲龙相比太过舒适。大雨倾盆,大风大,四扇窗户都开,安全减风阻看得清楚,悬架调校得很好,不软也不硬,调校得适中,真皮座椅足够舒适,支撑力可以,包裹性一般。功率适中,比较充足。 金牛座搭载的是128英寸触控液晶屏,虽然能给人一定的科技感,但将空调等功能的实体按键也整合在了这块大屏内,使得实际操作时不够方便和安全。
方向盘采用了真皮材质包裹,金牛座的方向盘采用了四辐式设计,多功能按键比较丰富,布局也较为合理。金牛座仪表盘采用了双圆环式的设计,信息显示比较清晰,读取也比较方便。
汽车底盘调节很满意,整款车行驶比较平稳,还不错,只是原地打转有点不舒服,重跑高速时没有感觉到飘,刹车系统也很线性。
福特金牛座在刚刚推出时还有一些热度,但随着时间的一步步推进,对手们都在争先恐后的大改设计迎合市场,而这款车一直都没有什么较大的变动。但客观地看这辆车的产品力还是比较均衡的,首先作为商务定位的它在空间方面的表现是不错的,另外在配置方面,它也比较丰富,多出来的诸如远程启动这样的配置也可以一定程度上提升用车的舒适性和便利性。从数据上来看,该车的动力表现自然也是不必担心的。但在整体的设计上,还是略显乏味。
本文来源于汽车之家车家号作者,不代表汽车之家的观点立场。
欢迎分享,转载请注明来源:表白网
评论列表(0条)