星空站发射了新的实验舱,天王星和金牛座有关吗?

星空站发射了新的实验舱,天王星和金牛座有关吗?,第1张

恒星的佛兰斯蒂德命名法与拜耳命名法类似,除了以数字取代希腊字母外,每颗恒星还是以数字和拉丁文所有格的星座名称结合在一起。在每一个星座中,数字起初是随著赤经的增加而增加,但是因为岁差影响,现在有些地方已经不合规定了。当现代的星座界限在草拟时,有些已经有佛氏编号的恒星被分割到没有被编号过的星座内,或是因为已经有了拜耳的名称,而省略了编号。

但需要特别注意的是佛氏编号只涵盖到在大不列颠可以看见的星星,因此偏向南天的星座都没有佛氏编号。(两个例外是球状星团杜鹃座47和邻近的波江座82。在佛兰斯蒂德的目录上有些错误的记载,例如,佛兰斯蒂德在1690年记录了天王星,但他没有认出那是颗行星,而将他登录为金牛座34。发现号航天飞机发现号航天飞机(STSDiscoveryOV-103)是美国国家航空航天局(NASA)肯尼迪太空中心(KSC)旗下,第三架实际执行太空飞行任务的航天飞机。

首次飞行是在1984年8月30日,迄今为止仍在服勤中,负责进行各种科学研究与作为国际太空站(InternationalSpaceStation,ISS)计划的支援。发现号将于2010年退役。美国宇航局(NASA)的“发现”号航天飞机当地时间23日在肯尼迪航天中心发射升空,飞往国际空间站,进行为期两周的航天使命。“发现”号上的7名宇航员将在国际空间站上安装一个新的太空舱,以扩展国际空间站的规模。

10月28日,宇航员斯科特·帕拉金斯基和丹尼尔·塔尼进行了第二次太空行走,为“和谐”节点舱安装外部组件、卸下一个厚重支架并检查国际空间站可能存在问题的设备。“发现号”此行的主要任务是运送和安装“和谐”节点舱,以便日后欧洲及日本的“哥伦布”和“希望”号实验舱能够与国际空间站进行对接,为空间站实验舱的发射做好前期准备。这是自2001年以来安装的首个新舱,对于国际空间站的扩大而言具有重要意义。

这个问题问的不严谨,是阿波罗17号完成任务后,NASA结束了阿波罗计划。至于为什么结束阿波罗计划,NASA并没有给出解释,众人也只是猜测而已。猜测原因众说纷纭,呼声较高的几种说法分别是:阿波罗计划太烧钱了但是每次只是采集一些岩石带回,回报不大且进展慢;阿波罗计划实行当初是美国为了跟苏联竞争,在航天技术上压苏联一头,后来局势稳定就没必要了;还有一种是说NASA的登月计划转入地下秘密进行,对外宣布停止是烟雾弹。

阿波罗17号登月舱于1972年12月7日,由土星5号火箭运载升空,小组由指令长尤金-塞尔南、指令舱驾驶员罗纳德-埃万斯和登月舱驾驶员哈里森-施密特组成。1972年12月11日降落在金牛座利特洛峡谷,两名宇航员在那里进行了三次月面活动总计时长22小时,并采集了243磅的岩石。这是阿波罗计划中最后一次任务,此后时任美国总统尼克松宣布停止阿波罗计划。

阿波罗计划,又叫做阿波罗工程,是美国从1961年到1972年组织实施的一系列载人登月飞行任务。目的是实现载人登月飞行和人对月球的实地考察,为载人行星飞行和探测进行技术准备,它是世界航天史上具有划时代意义的一项成就。阿波罗计划始于1961年5月,至1972年12月第6次登月成功结束,历时约11年,耗资255亿美元。

整个阿波罗计划下来耗资巨大,并且对宇航员们的生命安全没有绝对的保障,风险超出其他项目。但很多人却怀疑这只是美国的一场骗局,是美国与苏联搞军备竞赛编出的谎言。尼克松政府后来以风险太大经费不足为由拒绝了阿波罗的背面登月申请,再后来宣布阿波罗计划停止。

从加利福尼亚州范登堡空军基地发射仅两周后,NASA的双小行星重定向测试(DART)航天器已经打开了它的“眼睛”并从太空返回了它的第一批图像--这对航天器和DART团队来说是一个重要的操作里程碑。

在经历了发射时的剧烈震动和太空中零下80摄氏度的极端温度变化后,马里兰州劳雷尔的约翰-霍普金斯应用物理实验室的任务操作中心的科学家和工程师们屏住呼吸期待着。因为航天器的望远镜仪器的组件对小至五百万分之一米的移动都很敏感,所以即使仪器中的东西出现极其微小的偏移后果也可能非常严重。

12月7日周二,航天器打开了覆盖其DRACO望远镜相机光圈的圆门,并且令所有人高兴的是,它传回了其周围环境的第一张图像。这张照片拍摄于距离地球约200万英里(11光秒)的地方--从天文学角度讲,非常近--照片显示了约十几颗恒星,在黑色的太空背景下晶莹剔透、清晰可见,靠近英仙座、白羊座和金牛座的交汇处。

位于加利福尼亚的NASA喷气推进实验室的DART导航小组利用图像中的星星准确地确定了DRACO的方向,另外还提供了相机相对于航天器的首次测量。有了这些测量数据,DART团队可以准确地移动航天器以将DRACO对准感兴趣的天体如Messier 38(M38),DART已于12月10日的另一张图像中捕捉到了它。据悉,该星团位于北极 星座 ,距离地球约4200光年。有意捕捉像M38这样有许多恒星的图像有助于研究小组描述图像中的光学缺陷以及校准一个物体的绝对亮度--当DRACO开始对航天器的目的地--双子小行星系统Didymos--进行成像时,这些细节对精确测量都非常重要。

DRACO(全称Didymos Reconnaissance and Asteroid Camera for Optical navigation的缩写)是一台高分辨率相机,其灵感来自于NASA“新视野号”飞船上的成像器,该飞船传回了冥王星系统和柯伊伯带天体Arrokoth的首批特写图像。作为DART的唯一仪器,DRACO将捕捉小行星Didymos及其卫星小行星Dimorphos的图像,另外还将支持航天器的自主制导系统并引导DART进行最终的动能撞击。

DART是由约翰霍普金斯大学APL为NASA的行星防御协调办公室开发和管理的。DART作为世界上第一个行星防御测试任务,故意执行对Dimorphos的动能撞击以稍微改变其在空间的运动。虽然这两颗小行星都没有对地球构成威胁,但DART任务将证明航天器可以自主导航,

对一个相对较小的目标小行星进行动能撞击,且如果有一天发现真正危险的小行星,这是一种可行的技术,可以使其偏离。据悉,DART将于2022年9月26日到达其目标。

公元1054年7月4日,我国北宋仁宗至和元年的五月二十六日,大约天亮时分,开封府东南方向的天空中出现了一颗极亮的大星,因其出现在天关(即金牛座)位置,宋代司天监的天文研究者们称其为“天关客星”。这一天文事件被多部史书记载了下来——

据《宋史·天文志·第九》,这颗星于“至和元年五月己丑,出天关东南可数寸,岁余稍没”;《宋会要》记载:“嘉祐元年三月,司天监言:‘客星没,客去之兆也’。初,至和元年五月,晨出东方,守天关,昼见如太白,芒角四出,色赤白,凡见二十三日”。

这是 历史 上最早记载恒星爆炸的文字,也即当今天文学界非常著名的蟹状星云的前身恒星初始爆炸时候的情景。尽管其距离在地球6500光年远的地方,人们在地球上的白天,仍能看到它的光亮。

距离蟹状星云爆炸后967年,近日,地球再次收到从金牛座传回的“讯息”——

同时,这次观测还记录到能量达11拍电子伏(拍=千万亿)的伽马光子,由此确定在大约仅为太阳系1/10大小的(约5000倍日地距离)星云核心区内存在能力超强的电子加速器,加速能量达到了人工加速器产生的电子束的能量(欧洲核子研究中心大型正负电子对撞机LEP)两万倍左右,直逼经典电动力学和理想磁流体力学理论所允许的加速极限。此次观测结果是基于LHAASO 1/2 阵地和 3/4 阵地过去14个月观测的成果,已于今日(7月9日)在《科学》(Science)上发表,由中国科学院高能物理研究所牵头的LHAASO国际合作组完成。

在成果发布前夕,中国科学院高能所研究员、高海拔宇宙线观测站首席科学家曹臻专程从北京飞到成都,接受一众媒体采访。“这是在四川发现的成果,一定要在四川讲出来!”他说。

此次研究发现意义何在?LHAASO的科学目标是什么?

曹臻

为超高能区标准烛光设定亮度标准

“这把尺子,被我们中国人找到了!”

红星新闻: 此次成果除了观测到11拍电子伏光子,还实现了前所未有的超高能区(03-11拍电子伏)的精确测量,其意义何在?

曹臻: 除了带来其自身对物理理解的理论模型外,蟹状星云还有一个更为重要的功能,即为该能区标准烛光设定了亮度标准。在最高能段的标准里,在LHAASO之前,没有任何手段可以检测。也就是说,LHAASO开辟了全新的未知领域,且制定了这个领域的实验调查发展的标准。

打个比喻,就像提供了一把标准计量的尺子,将来此类实验,都要以此来检测探测器的测量是否准确。而这把尺子,被我们中国人找到了!

红星新闻: 什么是标准烛光?

曹臻: 目前北半球只有蟹状星云一个标准烛光,标准烛光应用在天文观测上,其作用有2个:位置和亮度。

具体来说,天文望远镜要精准测量一个星体的具体位置,就要用蟹状星云来表明探测器方位。

从亮度来说,在万亿亿倍的范围上,蟹状星云是为数极少的在射电、红外、光学、紫外、X射线和伽马射线波段都有辐射的天体, 历史 上对其光谱已经进行了大量的观测研究,是非常明亮且稳定的高能辐射源,因此在多个波段它被作为标准烛光,也即是测量其它天体辐射强度的标尺。如果落在能量范围内的光子在此次制定的物理模型范围内,就证明亮度测对了。

高海拔宇宙线观测站(LHAASO) 图据高能所

红星新闻: 您所提到的“星云核心区内存在能力超强的电子加速器,加速能量达到了人工加速器产生的电子束的能量两万倍左右”,此发现意义何在?未来可运用在哪些领域?

曹臻:除了直逼经典电动力学和理想磁流体力学理论所允许的加速极限,未来我们还可能找到和人类制造的地面加速器完全不一样的加速机制和方式,对未来地面加速器的 设计和建造有重大指导意义。

此次研究成果主要用于基础物理的研究 探索 。未来如果我们能造出更高效率的加速器,这些加速器就可用于癌症治疗和诊断等领域。比如,现在的加速器只在大型医院使用,未来这些设备可能更加小型化,在一些小医院里就可以使用。

红星新闻: 这次的发现也是“千年等一回”,为何距离上一次重大发现,中间隔了那么长时间?

曹臻: 科技 发展是主要因素。古代只能用肉眼观看,现在有各种各样的波段测量仪器和手段,从贵州的500米口径球面射电望远镜(FAST)到LHAASO,其中覆盖的能量范围是 万亿亿倍,包括射电、红外、光学、紫外、X射线和伽马射线波段,LHAASO还覆盖了更高能量的波段。

此外,蟹状星云爆炸后的遗迹星云至今的辐射也比太阳大,爆炸后形成的中子星直径约25公里,以每秒30圈的速度急速旋转着,整个星体至今仍以每秒1000~1500公里的速度扩张着。经过近一千年左右的扩展,高速旋转的超强磁场将脉冲星表面磁层中的大量正负电子持续不断地吹向四周,形成一股速度近乎光速的强劲星风。星风中的电子与外部介质碰撞后会被进一步加速至更高能量并产生我们看到的星云。

要注意的是,尽管蟹状星云在不断扩大,但它的大小实际上只有0005度,我们在地球上以6500光年的距离看它,肉眼依然分辨不出,只有通过天文望远镜才能看到它的面貌。

红星新闻: 那我们是否会和贵州的FAST进行合作?

曹臻: 当然!我们前面提到,FAST到LHAASO,其中覆盖的能量范围是 万亿亿倍,FAST正好是最低的一段,LHAASO是最高的一段,要对此现象进行一个完整深入研究,一定要开展多波段的综合统一研究。在多波段研究中,我们已经和FAST提出多个源的观测申请。最终目的,是通过研究这些特殊的天体,找到宇宙线起源,搞清楚起源的机制是什么。从科学上来讲,这也是我们最终要实现的目标。

高海拔宇宙线观测站(LHAASO) 图据高能所

LHAASO今年8月正式投运

“将有更多激动人心的科学突破”

红星新闻: 时隔近一千年,蟹状星云再次被我们中国人、被四川的科学观测站捕捉到了,对此您有何感受?

曹臻: 肯定很自豪。在天文 历史 中,蟹状星云有很多个“第一”,但这一次的“第一”不太一样,因为我们所观测到的11拍电子伏,可能是能观测到的最高能量段,是一个全新的未知领域。在LHAASO建造前,欧洲和美国主流的伽马光子的探测是天文望远镜,其能捕捉到的 最高能量为01个拍电子伏。在过去二、三十年中,发表在《科学》上的,都是几十个零点零几拍电子伏的观测。原因是随着能量升高,电子强度越来越低,如果没有像LHAASO这样高灵敏度的大型探测器,是无法将其捕捉的。这也是此次统计数据尤为重要的原因。

NASA发布的蟹状星云中心,中心有最明亮的一颗中子星。图源/IC photo

同时,LHAASO可能在未来十年乃至二十年内,都是一个国际领先的大科学装置。可以看到,中国人在科学上的贡献,已经变得越来越重要。

红星新闻: 上一次发布LHAASO观测到的成果是5月17日,不到两个月时间,我们就发布了2次重大成果,对于这个频率您如何看?

曹臻: 无论是速度还是更高能量级的发现,都大大超出了我们的预期。值得一提的是,LHAASO是一个非常综合性的探测装置, 它一共 有4种探测器, 这4种探测器对于宇宙线的现象,从不同角度立体地进行观测,因此它提供了一个非常丰富的宇宙线的知识测量。除了研究基础物理的内容以外,它还可以研究气象、雷电、太阳活动等等,这些领域的研究也正在逐渐开展。

红星新闻: 能否介绍下LHAASO的建设节点和未来三五年的中远期规划?

曹臻: 目前LHAASO阵列 探测器的安装已全部结束,已进入探测器调试的最后阶段,预计今年7月底可以达到完全观测的条件,8月正式投入运营,年底前完成验收。

LHAASO的未来规划依然是天文观测。目前我们已经发现有12个宇宙线起源的候选天体,未来几年,我们会像此次发布的蟹状星云成果一样,对 这些源去做深入研究。LHAASO的潜力巨大,目前我们的成果仅仅是冰山一角,一旦阵列正式运行,可以预见的是,未来将有更多激动人心的科学突破。

编辑 陈怡西

(下载红星新闻,报料有奖!)

64年前,人类开启了太空时代,我们终于可以离开地球。我们可以把人造卫星送入太空,把无人探测器送到其他星球上,也可以让宇航员飞上太空,甚至还能让宇航员登上月球。

人类的太空 探索 能力还不限于此,太阳的引力没能束缚住人类。过去数十年来,美国宇航局(NASA)相继发射了5艘星际飞船,它们都在飞离太阳系。然而,这些星际飞船携带着地球的位置和人类的信息,一些人担心这会向宇宙暴露出地球,置人类于未知的危险之中。那么,NASA到底想干什么呢?

上个世纪60年代,天文学家通过计算发现,十几年后,太阳系中最大的四颗巨行星(木、土、天王与海王星)将会运行到特殊的轨道位置,出现百年一遇的罕见排列。在此期间,太空飞船只需很少的能量,借助四大巨行星的引力进行加速,就能相继造访它们。

为此,在1972年,NASA发射了试验飞船——先驱者10号,它承载着人类的期望飞向宇宙。这艘无人太空飞船犹如太阳系拓荒者,创向了当时的很多世界第一。

当时,先驱者10号是飞得最快、并且离地球最远的人造物体。它首次穿过了小行星带,飞向太阳系深处,先后探测了木星和土星,并且也率先飞出了太阳系八大行星的范围。

虽然先驱者10号早已消耗完燃料,但由于它的速度足够快,超过了太阳系逃逸速度,它不会被太阳的引力所束缚住。目前,先驱者10号正以119公里/秒的速度朝着金牛座方向前进,距离地球190亿公里。

需要注意的是,我们平时所说的第三宇宙速度为167公里/秒,太空飞船只有达到这个速度才能脱离太阳系,这个速度是指从地球上发射的太空飞船所需的初速度(利用地球的公转速度)。而距离太阳越远,引力作用越弱,冲出太阳系所需的初速度也会越小,先驱者10号的速度始终大于它所在位置的太阳系逃逸速度。

在先驱者10号离开地球一年之后,先驱者11号也开启了星际之旅。先驱者11号也是先后探测了木星与土星,然后朝着盾牌座方向进发。目前,先驱者11号的飞行速度为112公里/秒,距离地球160亿公里。

先驱者10号和11号都携带着一块特制的镀金铝板,上面刻有人类的画像,以及地球相对于银河系中14颗脉冲星的位置,天文学家想要借此向宇宙中可能存在的外星人发出问候。

经过前面两次的成功试验之后,到了1977年,NASA先后发射了旅行者2号和旅行者1号。这两架探测器携带着更加先进的科学设备,对四大巨行星开展更加深入的研究。

虽然旅行者1号比2号晚两周出发,但它的速度更快,追过旅行者2号,更早飞抵木星。之后,旅行者1号借由木星引力前往土星,在那里进行计划外的变轨,对神秘的土卫六进行观测,导致它无法继续后面的行星探测任务。

如今,旅行者1号早已超越先行离开地球的先驱者10号和11号,成为飞得最远的人造物体。旅行者1号最先飞出太阳风层顶,正面接触来自星际空间的物质。旅行者1号目前距离地球将近228亿公里,飞行速度为169公里/秒,飞行方向为蛇夫座。

后来,只有旅行者2号完成了四大巨行星的探测。时至今日,也只有旅行者2号拜访过天王星和海王星这两大冰巨行星。旅行者2号目前距离地球189亿公里,飞行速度为153公里/秒,飞行方向为孔雀座。

旅行者1号和2号都携带着一张镀金唱片,其中包含着更加丰富的地球和人类的信息,以期外星文明能够知道人类的存在,并与人类进行通信,甚至造访地球。

这是NASA迄今为止发射的最后一艘星际飞船,它于2006年离开地球。新视野号(又称新地平线号)的首要任务是造访曾经的第九大行星——冥王星,它在2015年完成了这项任务。此后,新视野号深入柯伊伯带,对那里面的小行星进行观测。

考虑到此前四艘星际飞船有暴露地球和人类的风险,再加上成本问题,新视野号并没有携带与外星文明进行沟通的信息。目前,新视野号正以139公里/秒的速度朝着人马座方向进发,距离地球75亿公里。

对于此前泄露地球和人类信息的行为,一些人持批评的态度。因为我们无法知道外星人是不是善意的,一旦外星文明有能力发现并且造访地球,他们的 科技 文明等级一定远超人类,如果他们想要入侵地球,根本不费吹灰之力。

不过,这样的担忧也许是多余的。因为宇宙空间实在太过于浩瀚,以最快的旅行者1号为例,它要完全飞出太阳系将要耗时长达18万年,人类的5艘星际飞船几乎不可能会被外星文明发现。

这些星际飞船在宇宙中唯一可能会遇上的智慧文明就是人类。因为它们还要漫长的时间才会飞出太阳系,等到未来人类的宇航 科技 足够发达,那时完全有可能追上它们,并将它们带回地球。

欢迎分享,转载请注明来源:表白网

原文地址:https://h5.hunlipic.com/xing/1157188.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-09-14
下一篇2023-09-14

发表评论

登录后才能评论

评论列表(0条)

    保存