怎么样解决逻辑悖论.请详细.

怎么样解决逻辑悖论.请详细.,第1张

1-1 谎言者悖论

公元前六世纪,哲学家克利特人艾皮米尼地斯(Epimenides):“所有克利特 人都说谎,他们中间的一个诗人这么说。”这就是这个著名悖论的来源。

《圣经》里曾经提到:“有克利特人中的一个本地中先知说:‘克利特人常说谎话,乃是恶兽,又馋又懒’”(《提多书》第一章)。可见这个悖论很出名,但是保罗对于它的逻辑解答并没有兴趣。

人们会问:艾皮米尼地斯有没有说谎?这个悖论最简单的形式是:

1-2 “我在说谎”

如果他在说谎,那么“我在说谎”就是一个谎,因此他说的是实话;但是如果这是实话,他又在说谎。矛盾不可避免。它的一个翻版:

1-3 “这句话是错的”

这类悖论的一个标准形式是:如果事件A发生,则推导出非A,非A发生则推导出A,这是一个自相矛盾的无限逻辑循环。拓扑学中的单面体是一个形像的表达。

哲学家罗素曾经认真地思考过这个悖论,并试图找到解决的办法。他在《我的哲学的发展》第七章《数学原理》里说道:“自亚里士多德以来,无论哪一个学派的逻辑学家,从他们所公认的前提中似乎都可以推出一些矛盾来。这表明有些东西是有毛病的,但是指不出纠正的方法是什么。在1903年的春季,其中一种矛盾的发现把我正在享受的那种逻辑蜜月打断了。”

罗素试图用命题分层的办法来解决:“第一级命题我们可以说就是不涉及命题总体的那些命题;第二级命题就是涉及第一级命题的总体的那些命题;其余仿此,以至无穷。”但是这一方法并没有取得成效。“1903年和1904年这一整个时期,我差不多完全是致力于这一件事,但是毫不成功。”(同上)

《数学原理》尝试整个纯粹的数学是在纯逻辑的前提下推导出来的,并且使用逻辑术语说明概念,回避自然语言的歧意。但是他在书的序言里称这是:“发表一本包含那么许多未曾解决的争论的书。”可见,从数学基础的逻辑上彻底地解决这个悖论并不容易。

1-4 理发师悖论

在萨维尔村,理发师挂出一块招牌:“我只给村里所有那些不给自己理发的人理发。”有人问他:“你给不给自己理发?”理发师顿时无言以对。

这是一个矛盾推理:如果理发师不给自己理发,他就属于招牌上的那一类人。有言在先,他应该给自己理发。

以下简要列举名称,以供参考。具体内容可按名称搜,均有详细介绍。

如果想要研究,就得有探索的精神。谢谢。

先举三个我喜欢的:

1罗素悖论;同类的有欧布里德五大悖论;鳄鱼悖论,理发师悖论,预言家悖论;

究其根源都是陷入了自我否定的循环。

2阿喀琉斯追龟论;中国相同的有“飞矢不动”;

3另外还有关于“那一艘是真正的王后号帆船”的本体悖论;

以上都可归为语言悖论(2除外);

其他还有现实悖论:能不能两次踏入同一条河;性本善还是性本恶;英雄造时势还是时势造英雄;现实的就是合理的吗;为道与为学正好相反吗?

文化悖论:菜园悖论,德尔图良悖论“为什么要信仰荒谬的”;清水与钻石哪个更值钱;事物是变迁的吗?

逻辑悖论:

阿喀琉斯追龟论、全能悖论“上帝能不能造出自己举不起来的大石头”

认识悖论:

苏格拉底“怎样知道自己一无所知”、战国辨者十三悖论、嵇康悖论“声音有没有哀愁和欢乐”、怀疑者悖论“能不能怀疑自己的怀疑”、高尔基亚三大悖论“万物存在还是不存在”。

悖论主要有逻辑悖论、概率悖论、几何悖论、统计悖论和时间悖论等。

罗素的悖论以其简单明确震动了整个数学界,造成第三次数学危机。但是,罗素悖论并不是头一个悖论。老的不说,在罗素之前不久,康托尔和布拉里·福蒂已经发现集合论中的矛盾。罗素悖论发表之后,更出现了一连串的逻辑悖论。这些悖论使人联想到古代的说谎者悖论。即“我正在说谎”,“这句话是谎话”等。这些悖论合在一起,造成极大问题,促使大家都去关心如何解决这些悖论。

头一个发表的悖论是布拉里·福蒂悖论,这个悖论是说,序数按照它们的自然顺序形成一个良序集。这个良序集合根据定义也有一个序数Ω,这个序数Ω由定义应该属于这个良序集。可是由序数的定义,序数序列中任何一段的序数要大于这段之内的任何序数,因此Ω应该比任何序数都大,从而又不属于Ω。这是布拉里·福蒂1897年3月28日在巴洛摩数学会上宣读的一篇文章里提出的。这是头一个发表的近代悖论,它引起了数学界的兴趣,并导致了以后许多年的热烈讨论。有几十篇文章讨论悖论问题,极大地推动了对集合论基础的重新审查。

布拉里·福蒂本人认为这个矛盾证明了这个序数的自然顺序只是一个偏序,这与康托尔在几个月以前证明的结果序数集合是全序相矛盾,后来布拉里·福蒂在这方面并没有做工作。

罗素在他的《数学的原理》中认为,序数集虽然是全序,但并非良序,不过这种说法靠不住,因为任何给定序数的初始一段都是良序的。法国逻辑学家茹尔丹找到—条出路,他区分了相容集和不相容集。这种区分实际上康托尔已经私下用了许多年了。不久之后,罗素在1905年一篇文章中对于序数集的存在性提出了疑问,策梅罗也有同样的想法,后来的许多人在这个领域都持有同样的想法。

欢迎分享,转载请注明来源:表白网

原文地址:https://h5.hunlipic.com/biaobai/4091520.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2024-04-15
下一篇2024-04-15

发表评论

登录后才能评论

评论列表(0条)

    保存