遗传算法优化概率神经网络的matlab代码

遗传算法优化概率神经网络的matlab代码,第1张

原理大概是,设置一个初始种群,种群里的个体就是平滑因子,经过遗传算法的选择、交叉、变异后,逐渐找到一个最佳的spread,即为最终结果。

附件是一个GA-BP算法的程序,虽然不同,但是原理是相近的,可以参考。

遗传算法的基本运算过程如下:

a)初始化:设置进化代数计数器t=0,设置最大进化代数T,随机生成M个个体作为初始群体P(0)。

b)个体评价:计算群体P(t)中各个个体的适应度。

c)选择运算:将选择算子作用于群体。选择的目的是把优化的个体直接遗传到下一代或通过配对交叉产生新的个体再遗传到下一代。选择操作是建立在群体中个体的适应度评估基础上的。

d)交叉运算:将交叉算子作用于群体。遗传算法中起核心作用的就是交叉算子。

e)变异运算:将变异算子作用于群体。即是对群体中的个体串的某些基因座上的基因值作变动。

群体P(t)经过选择、交叉、变异运算之后得到下一代群体P(t+1)。

f)终止条件判断:若t=T,则以进化过程中所得到的具有最大适应度个体作为最优解输出,终止计算。

最近研究了一下遗传算法,因为要用遗传算法来求解多元非线性模型。还好用遗传算法的工具

箱予以实现了,期间也遇到了许多问题。借此与大家分享一下。

首先,我们要熟悉遗传算法的基本原理与运算流程。

基本原理:遗传算法是一种典型的启发式算法,属于非数值算法范畴。它是模拟达尔文的自然

选择学说和自然界的生物进化过程的一种计算模型。它是采用简单的编码技术来表示各种复杂

的结构,并通过对一组编码表示进行简单的遗传操作和优胜劣汰的自然选择来指导学习和确定

搜索的方向。遗传算法的操作对象是一群二进制串(称为染色体、个体),即种群,每一个染

色体都对应问题的一个解。从初始种群出发,采用基于适应度函数的选择策略在当前种群中选

择个体,使用杂交和变异来产生下一代种群。如此模仿生命的进化进行不断演化,直到满足期

望的终止条件。

运算流程:

Step 1:对遗传算法的运行参数进行赋值。参数包括种群规模、变量个数、交叉概率、变异概

率以及遗传运算的终止进化代数。

Step 2:建立区域描述器。根据轨道交通与常规公交运营协调模型的求解变量的约束条件,设

置变量的取值范围。

Step 3:在Step 2的变量取值范围内,随机产生初始群体,代入适应度函数计算其适应度值。

Step 4:执行比例选择算子进行选择操作。

Step 5:按交叉概率对交叉算子执行交叉操作。

Step 6:按变异概率执行离散变异操作。

Step 7:计算Step 6得到局部最优解中每个个体的适应值,并执行最优个体保存策略。

Step 8:判断是否满足遗传运算的终止进化代数,不满足则返回Step 4,满足则输出运算结果

其次,运用遗传算法工具箱。

运用基于Matlab的遗传算法工具箱非常方便,遗传算法工具箱里包括了我们需要的各种函数库

。目前,基于Matlab的遗传算法工具箱也很多,比较流行的有英国设菲尔德大学开发的遗传算

法工具箱GATBX、GAOT以及Math Works公司推出的GADS。实际上,GADS就是大家所看到的

Matlab中自带的工具箱。我在网上看到有问为什么遗传算法函数不能调用的问题,其实,主要

就是因为用的工具箱不同。因为,有些人用的是GATBX带有的函数,但MATLAB自带的遗传算法

工具箱是GADS,GADS当然没有GATBX里的函数,因此运行程序时会报错,当你用MATLAB来编写

遗传算法代码时,要根据你所安装的工具箱来编写代码。

以GATBX为例,运用GATBX时,要将GATBX解压到Matlab下的toolbox文件夹里,同时,set path

将GATBX文件夹加入到路径当中。

最后,编写Matlab运行遗传算法的代码。

这块内容主要包括两方面工作:1、将模型用程序写出来(M文件),即目标函数,若目标函

数非负,即可直接将目标函数作为适应度函数。2、设置遗传算法的运行参数。包括:种群规

模、变量个数、区域描述器、交叉概率、变异概率以及遗传运算的终止进化代数等等。

为方便大家理解,以下为例:

求解模型:TC=x1+2x2+3x3+4x4,-1<=x<=0

根据上面的求解模型,可以写出模型的M文件如下,即适应度函数

function TC=TotalCost(x)

TC=0;

for i=1:4

TC=TC+ix(i);

end

然后,可以利用遗传算法工具箱来写出遗传算法运行的主要程序,如下:

%定义遗传算法参数

NIND=20; %个体数目

MAXGEN=200; %最大遗传代数

NVAR=4; %变量维数

PRECI=20; %变量的二进制位数

GGAP=09; %代沟

trace=zeros(MAXGEN,2); %算法性能跟踪

%建立区域描述器

FieldD=[rep(PRECI,[1,NVAR]);rep([-1;0],[1,NVAR]);rep([1;0;1;1],[1,NVAR])];

Chrom=crtbp(NIND,NVARPRECI); %创建初始种群

gen=0; %代计数器

ObjV=TotalCost(bs2rv(Chrom,FieldD)); %计算初始种群个体的目

标函数值

while gen<MAXGEN,

FitnV=ranking(ObjV); %分配适应度值

SelCh=select('sus',Chrom,FitnV,GGAP); %选择

SelCh=recombin('xovsp',SelCh,07); %重组

SelCh=mut(SelCh,007); %变异

ObjVSel=TotalCost(bs2rv(SelCh,FieldD)); %计算子代目标函数值

[Chrom ObjV]=reins(Chrom,SelCh,1,1,ObjV,ObjVSel); %重插入

gen=gen+1;

%输出最优解及其对应的10个变量的十进制值

[Y,I]=min(ObjVSel);

Y,X=bs2rv(Chrom(I,:),FieldD);

trace(gen,1)=min(ObjV);

trace(gen,2)=sum(ObjV)/length(ObjV);

end

plot(trace(:,1));hold on;

plot(trace(:,2),'-');grid;

legend('种群均值的变换','最优解的变化');

显然,根据模型的特征,最优解应该是-10,自变量分别取-1,-1,-1,-1。大家可以安装

GATBX,在Matlab中建立目标函数的M文件以及遗传算法主程序的文件来进行试验。

希望以上内容对学习和运用遗传算法的同仁有所帮助,因为本人也是初学,因此有不详之处请

见谅。

////////////////////////////////////////////////////

matlab遗传算法工具箱函数及实例讲解(转引)

gaotv5

核心函数:

(1)function [pop]=initializega(num,bounds,eevalFN,eevalOps,options)--初始种群的生

成函数

输出参数

pop--生成的初始种群

输入参数

num--种群中的个体数目

bounds--代表变量的上下界的矩阵

eevalFN--适应度函数

eevalOps--传递给适应度函数的参数

options--选择编码形式(浮点编码或是二进制编码)[precision F_or_B],如

precision--变量进行二进制编码时指定的精度

F_or_B--为1时选择浮点编码,否则为二进制编码,由precision指定精度)

(2)function [x,endPop,bPop,traceInfo] = ga(bounds,evalFN,evalOps,startPop,opts,

termFN,termOps,selectFN,selectOps,xOverFNs,xOverOps,mutFNs,mutOps)--遗传

算法函数

输出参数

x--求得的最优解

endPop--最终得到的种群

bPop--最优种群的一个搜索轨迹

输入参数

bounds--代表变量上下界的矩阵

evalFN--适应度函数

evalOps--传递给适应度函数的参数

startPop-初始种群

opts[epsilon prob_ops display]--opts(1:2)等同于initializega的options参数,第三

个参数控制是否输出,一般为0。如[1e-6 1 0]

termFN--终止函数的名称,如['maxGenTerm']

termOps--传递个终止函数的参数,如[100]

selectFN--选择函数的名称,如['normGeomSelect']

selectOps--传递个选择函数的参数,如[008]

xOverFNs--交叉函数名称表,以空格分开,如['arithXover heuristicXover

simpleXover']

xOverOps--传递给交叉函数的参数表,如[2 0;2 3;2 0]

mutFNs--变异函数表,如['boundaryMutation multiNonUnifMutation nonUnifMutation

unifMutation']

mutOps--传递给交叉函数的参数表,如[4 0 0;6 100 3;4 100 3;4 0 0]

注意matlab工具箱函数必须放在工作目录下

问题求f(x)=x+10sin(5x)+7cos(4x)的最大值,其中0<=x<=9

分析选择二进制编码,种群中的个体数目为10,二进制编码长度为20,交叉概率为095,

变异概率为008

程序清单

%编写目标函数

function[sol,eval]=fitness(sol,options)

x=sol(1);

eval=x+10sin(5x)+7cos(4x);

%把上述函数存储为fitnessm文件并放在工作目录下

initPop=initializega(10,[0 9],'fitness');%生成初始种群,大小为10

[x endPop,bPop,trace]=ga([0 9],'fitness',[],initPop,[1e-6 1

1],'maxGenTerm',25,'normGeomSelect',

[008],['arithXover'],[2],'nonUnifMutation',[2 25 3]) %25次遗传迭代

运算借过为:x =

78562 248553(当x为78562时,f(x)取最大值248553)

注:遗传算法一般用来取得近似最优解,而不是最优解。

遗传算法实例2

问题在-5<=Xi<=5,i=1,2区间内,求解

f(x1,x2)=-20exp(-02sqrt(05(x1^2+x2^2)))-exp(05(cos(2pix1)+cos

(2pix2)))+2271282的最小值。

分析种群大小10,最大代数1000,变异率01,交叉率03

程序清单

%源函数的matlab代码

function [eval]=f(sol)

numv=size(sol,2);

x=sol(1:numv);

eval=-20exp(-02sqrt(sum(x^2)/numv)))-exp(sum(cos(2pix))/numv)

+2271282;

%适应度函数的matlab代码

function [sol,eval]=fitness(sol,options)

numv=size(sol,2)-1;

x=sol(1:numv);

eval=f(x);

eval=-eval;

%遗传算法的matlab代码

bounds=ones(2,1)[-5 5];

[p,endPop,bestSols,trace]=ga(bounds,'fitness')

注:前两个文件存储为m文件并放在工作目录下,运行结果为

p =

00000 -00000 00055

大家可以直接绘出f(x)的图形来大概看看f(x)的最值是多少,也可是使用优化函数来验证。

matlab命令行执行命令:

fplot('x+10sin(5x)+7cos(4x)',[0,9])

evalops是传递给适应度函数的参数,opts是二进制编码的精度,termops是选择maxGenTerm结

束函数时传递个maxGenTerm的参数,即遗传代数。xoverops是传递给交叉函数的参数。mutops

是传递给变异函数的参数。

发一份自编的MATLAB遗传算法代码,用简单遗传算法(Simple Genetic Algorithm or Standard Genetic Algorithm ,SGA)求取函数最大值,初版编写于7年前上学期间,当时是MATLAB 5x,在算法运行效率方面做了修改,主要是采用矩阵操作减少了循环。

遗传算法为群体优化算法,也就是从多个初始解开始进行优化,每个解称为一个染色体,各染色体之间通过竞争、合作、单独变异,不断进化。

优化时先要将实际问题转换到遗传空间,就是把实际问题的解用染色体表示,称为编码,反过程为解码,因为优化后要进行评价,所以要返回问题空间,故要进行解码。SGA采用二进制编码,染色体就是二进制位串,每一位可称为一个基因;解码时应注意将染色体解码到问题可行域内。

遗传算法模拟“适者生存,优胜劣汰”的进化机制,染色体适应生存环境的能力用适应度函数衡量。对于优化问题,适应度函数由目标函数变换而来。一般遗传算法求解最大值问题,如果是最小值问题,则通过取倒数或者加负号处理。SGA要求适应度函数>0,对于<0的问题,要通过加一个足够大的正数来解决。这样,适应度函数值大的染色体生存能力强。

遗传算法有三个进化算子:选择(复制)、交叉和变异。

SGA中,选择采用轮盘赌方法,也就是将染色体分布在一个圆盘上,每个染色体占据一定的扇形区域,扇形区域的面积大小和染色体的适应度大小成正比。如果轮盘中心装一个可以转动的指针的话,旋转指针,指针停下来时会指向某一个区域,则该区域对应的染色体被选中。显然适应度高的染色体由于所占的扇形区域大,因此被选中的几率高,可能被选中多次,而适应度低的可能一次也选不中,从而被淘汰。算法实现时采用随机数方法,先将每个染色体的适应度除以所有染色体适应度的和,再累加,使他们根据适应度的大小分布于0-1之间,适应度大的占的区域大,然后随机生成一个0-1之间的随机数,随机数落到哪个区域,对应的染色体就被选中。重复操作,选出群体规模规定数目的染色体。这个操作就是“优胜劣汰,适者生存”,但没有产生新个体。

交叉模拟有性繁殖,由两个染色体共同作用产生后代,SGA采用单点交叉。由于SGA为二进制编码,所以染色体为二进制位串,随机生成一个小于位串长度的随机整数,交换两个染色体该点后的那部分位串。参与交叉的染色体是轮盘赌选出来的个体,并且还要根据选择概率来确定是否进行交叉(生成0-1之间随机数,看随机数是否小于规定的交叉概率),否则直接进入变异操作。这个操作是产生新个体的主要方法,不过基因都来自父辈个体。

变异采用位点变异,对于二进制位串,0变为1,1变为0就是变异。采用概率确定变异位,对每一位生成一个0-1之间的随机数,看是否小于规定的变异概率,小于的变异,否则保持原状。这个操作能够使个体不同于父辈而具有自己独立的特征基因,主要用于跳出局部极值。

遗传算法认为生物由低级到高级进化,后代比前一代强,但实际操作中可能有退化现象,所以采用最佳个体保留法,也就是曾经出现的最好个体,一定要保证生存下来,使后代至少不差于前一代。大致有两种类型,一种是把出现的最优个体单独保存,最后输出,不影响原来的进化过程;一种是将最优个体保存入子群,也进行选择、交叉、变异,这样能充分利用模式,但也可能导致过早收敛。

由于是基本遗传算法,所以优化能力一般,解决简单问题尚可,高维、复杂问题就需要进行改进了。

下面为代码。函数最大值为39059262,此时两个参数均为-20480,有时会出现局部极值,此时一个参数为-20480,一个为20480。算法中变异概率pm=005,交叉概率pc=08。如果不采用最优模式保留,结果会更丰富些,也就是算法最后不一定收敛于极值点,当然局部收敛现象也会有所减少,但最终寻得的解不一定是本次执行中曾找到过的最好解。

(注:一位网名为mosquitee的朋友提醒我:原代码的变异点位置有问题。检验后发现是将最初的循环实现方法改为矩阵实现方法时为了最优去掉mm的第N行所致,导致变异点位置发生了变化,现做了修改,修改部分加了颜色标记,非常感谢mosquitee,2010-4-22)

% Optimizing a function using Simple Genetic Algorithm with elitist preserved

%Max f(x1,x2)=100(x1x1-x2)^2+(1-x1)^2; -20480<=x1,x2<=20480

% Author: Wang Yonglin (wylin77@126com)

clc;clear all;

format long;%设定数据显示格式

%初始化参数

T=100;%仿真代数

N=80;% 群体规模

pm=005;pc=08;%交叉变异概率

umax=2048;umin=-2048;%参数取值范围

L=10;%单个参数字串长度,总编码长度2L

bval=round(rand(N,2L));%初始种群

bestv=-inf;%最优适应度初值

%迭代开始

for ii=1:T

%解码,计算适应度

for i=1:N

y1=0;y2=0;

for j=1:1:L

y1=y1+bval(i,L-j+1)2^(j-1);

end

x1=(umax-umin)y1/(2^L-1)+umin;

for j=1:1:L

y2=y2+bval(i,2L-j+1)2^(j-1);

end

x2=(umax-umin)y2/(2^L-1)+umin;

obj(i)=100(x1x1-x2)^2+(1-x1)^2; %目标函数

xx(i,:)=[x1,x2];

end

func=obj;%目标函数转换为适应度函数

p=func/sum(func);

q=cumsum(p);%累加

[fmax,indmax]=max(func);%求当代最佳个体

if fmax>=bestv

bestv=fmax;%到目前为止最优适应度值

bvalxx=bval(indmax,:);%到目前为止最佳位串

optxx=xx(indmax,:);%到目前为止最优参数

end

Bfit1(ii)=bestv; % 存储每代的最优适应度

%%%%遗传操作开始

%轮盘赌选择

for i=1:(N-1)

r=rand;

tmp=find(r<=q);

newbval(i,:)=bval(tmp(1),:);

end

newbval(N,:)=bvalxx;%最优保留

bval=newbval;

%单点交叉

for i=1:2:(N-1)

cc=rand;

if cc<pc

point=ceil(rand(2L-1));%取得一个1到2L-1的整数

ch=bval(i,:);

bval(i,point+1:2L)=bval(i+1,point+1:2L);

bval(i+1,point+1:2L)=ch(1,point+1:2L);

end

end

bval(N,:)=bvalxx;%最优保留

%位点变异

mm=rand(N,2L)<pm;%N行

mm(N,:)=zeros(1,2L);%最后一行不变异,强制赋0

bval(mm)=1-bval(mm);

end

%输出

plot(Bfit1);% 绘制最优适应度进化曲线

bestv %输出最优适应度值

optxx %输出最优参数

遗传算法的基本原理和方法

一、编码

编码:把一个问题的可行解从其解空间转换到遗传算法的搜索空间的转换方法。

解码(译码):遗传算法解空间向问题空间的转换。

二进制编码的缺点是汉明悬崖(Hamming Cliff),就是在某些相邻整数的二进制代码之间有很大的汉明距离,使得遗传算法的交叉和突变都难以跨越。

格雷码(Gray Code):在相邻整数之间汉明距离都为1。

(较好)有意义的积木块编码规则:所定编码应当易于生成与所求问题相关的短距和低阶的积木块;最小字符集编码规则,所定编码应采用最小字符集以使问题得到自然的表示或描述。

二进制编码比十进制编码搜索能力强,但不能保持群体稳定性。

动态参数编码(Dynamic Paremeter Coding):为了得到很高的精度,让遗传算法从很粗糙的精度开始收敛,当遗传算法找到一个区域后,就将搜索现在在这个区域,重新编码,重新启动,重复这一过程,直到达到要求的精度为止。

编码方法:

1、 二进制编码方法

缺点:存在着连续函数离散化时的映射误差。不能直接反映出所求问题的本身结构特征,不便于开发针对问题的专门知识的遗传运算算子,很难满足积木块编码原则

2、 格雷码编码:连续的两个整数所对应的编码之间仅仅只有一个码位是不同的,其余码位都相同。

3、 浮点数编码方法:个体的每个基因值用某一范围内的某个浮点数来表示,个体的编码长度等于其决策变量的位数。

4、 各参数级联编码:对含有多个变量的个体进行编码的方法。通常将各个参数分别以某种编码方法进行编码,然后再将他们的编码按照一定顺序连接在一起就组成了表示全部参数的个体编码。

5、 多参数交叉编码:将各个参数中起主要作用的码位集中在一起,这样它们就不易于被遗传算子破坏掉。

评估编码的三个规范:完备性、健全性、非冗余性。

二、选择

遗传算法中的选择操作就是用来确定如何从父代群体中按某种方法选取那些个体遗传到下一代群体中的一种遗传运算,用来确定重组或交叉个体,以及被选个体将产生多少个子代个体。

常用的选择算子:

1、 轮盘赌选择(Roulette Wheel Selection):是一种回放式随机采样方法。每个个体进入下一代的概率等于它的适应度值与整个种群中个体适应度值和的比例。选择误差较大。

2、 随机竞争选择(Stochastic Tournament):每次按轮盘赌选择一对个体,然后让这两个个体进行竞争,适应度高的被选中,如此反复,直到选满为止。

3、 最佳保留选择:首先按轮盘赌选择方法执行遗传算法的选择操作,然后将当前群体中适应度最高的个体结构完整地复制到下一代群体中。

4、 无回放随机选择(也叫期望值选择Excepted Value Selection):根据每个个体在下一代群体中的生存期望来进行随机选择运算。方法如下

(1) 计算群体中每个个体在下一代群体中的生存期望数目N。

(2) 若某一个体被选中参与交叉运算,则它在下一代中的生存期望数目减去05,若某一个体未被选中参与交叉运算,则它在下一代中的生存期望数目减去10。

(3) 随着选择过程的进行,若某一个体的生存期望数目小于0时,则该个体就不再有机会被选中。

5、 确定式选择:按照一种确定的方式来进行选择操作。具体操作过程如下:

(1) 计算群体中各个个体在下一代群体中的期望生存数目N。

(2) 用N的整数部分确定各个对应个体在下一代群体中的生存数目。

(3) 用N的小数部分对个体进行降序排列,顺序取前M个个体加入到下一代群体中。至此可完全确定出下一代群体中M个个体。

6、无回放余数随机选择:可确保适应度比平均适应度大的一些个体能够被遗传到下一代群       体中,因而选择误差比较小。

7、均匀排序:对群体中的所有个体按期适应度大小进行排序,基于这个排序来分配各个个体被选中的概率。

8、最佳保存策略:当前群体中适应度最高的个体不参与交叉运算和变异运算,而是用它来代替掉本代群体中经过交叉、变异等操作后所产生的适应度最低的个体。

9、随机联赛选择:每次选取几个个体中适应度最高的一个个体遗传到下一代群体中。

10、排挤选择:新生成的子代将代替或排挤相似的旧父代个体,提高群体的多样性。

三、交叉

遗传算法的交叉操作,是指对两个相互配对的染色体按某种方式相互交换其部分基因,从而形成两个新的个体。

适用于二进制编码个体或浮点数编码个体的交叉算子:

1、单点交叉(One-point Crossover):指在个体编码串中只随机设置一个交叉点,然后再该点相互交换两个配对个体的部分染色体。

2、两点交叉与多点交叉:

(1) 两点交叉(Two-point Crossover):在个体编码串中随机设置了两个交叉点,然后再进行部分基因交换。

(2) 多点交叉(Multi-point Crossover)

3、均匀交叉(也称一致交叉,Uniform Crossover):两个配对个体的每个基因座上的基因都以相同的交叉概率进行交换,从而形成两个新个体。

4、算术交叉(Arithmetic Crossover):由两个个体的线性组合而产生出两个新的个体。该操作对象一般是由浮点数编码表示的个体。

四、变异

遗传算法中的变异运算,是指将个体染色体编码串中的某些基因座上的基因值用该基因座上的其它等位基因来替换,从而形成以给新的个体。

以下变异算子适用于二进制编码和浮点数编码的个体:

1、基本位变异(Simple Mutation):对个体编码串中以变异概率、随机指定的某一位或某几位仅因座上的值做变异运算。

2、均匀变异(Uniform Mutation):分别用符合某一范围内均匀分布的随机数,以某一较小的概率来替换个体编码串中各个基因座上的原有基因值。(特别适用于在算法的初级运行阶段)

3、边界变异(Boundary Mutation):随机的取基因座上的两个对应边界基因值之一去替代原有基因值。特别适用于最优点位于或接近于可行解的边界时的一类问题。

4、非均匀变异:对原有的基因值做一随机扰动,以扰动后的结果作为变异后的新基因值。对每个基因座都以相同的概率进行变异运算之后,相当于整个解向量在解空间中作了一次轻微的变动。

5、高斯近似变异:进行变异操作时用符号均值为P的平均值,方差为P2的正态分布的一个随机数来替换原有的基因值。

发现的几处错误:

1、适应度函数里面if a[i]=4改为if a(i)==4,类似的还有if b[i]=4。不需要多解释了吧?一个是数组注意和C语言风格区别,另一个是判断相等的符号问题。

2、适应度函数应返回列向量,在fit函数最后加一句:fitness=fitness(:);

3、选择的结果是种群规模减小,不能使用固定的出示规模20,应把适应度函数里面两处循环for i=1:20改为for i=1:size(x,1)

4、主函数里面rein应为reins。

 

代码写到一个M文件中:

function zd

%% 初始化遗传算法参数

%初始化参数

NIND=20;

MAXGEN=100;

NVAR=8;

PRECI=1;

GGAP=09;% 进化代数,即迭代次数

% 种群规模

%% 初始化种群计算适应度值

% 初始化种群

FieldD=[rep(PRECI,[1,NVAR]);rep([0;1],[1,NVAR]);rep([1;0;1;1],[1,NVAR])];

Chrom=crtbp(NIND,NVARPRECI);

ObjV=fit(bs2rv(Chrom,FieldD));

gen=0;

while gen<MAXGEN

    FitnV=ranking(ObjV);

    SelCh=select('sus',Chrom,FitnV,GGAP);

    SelCh=recombin('xovsp',SelCh,07);

    SelCh=mut(SelCh,007);

    ObjVSel=fit(bs2rv(SelCh,FieldD));

    [Chrom ObjV]=reins(Chrom,SelCh,1,1,ObjV,ObjVSel);

    gen=gen+1

    

    %找最好的染色体

    trace(gen,1)=min(ObjV);

    trace(gen,2)=sum(ObjV)/length(ObjV);

end

plot(trace(:,1)); hold on;

plot(trace(:,2)); grid;

legend('average','bestfitness');

function [fitness]=fit(x)

for i=1:size(x,1)

    i

    %随机产生一个种群

    if (x(i,6)x(i,7)-x(i,8)x(i,6))(x(i,3)x(i,2)-x(i,4)x(i,1))==0

        x(i,:)=unidrnd(2,1,8)-1;

    end%染色体的适应度

end

a=x(:,1)+x(:,2)+x(:,3)+x(:,4);

b=x(:,5)+x(:,6)+x(:,7)+x(:,8);

for i=1:size(x,1)

    i

    if a(i)==4

        c=1;

    else

        c=0;

    end

    if b(i)==4

        d=1;

    else

        d=0;

    end

    fitness(i)=c+d;

end

fitness=fitness(:);

欢迎分享,转载请注明来源:表白网

原文地址:https://h5.hunlipic.com/biaobai/3137911.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2024-02-08
下一篇2024-02-08

发表评论

登录后才能评论

评论列表(0条)

    保存