体积计算公式物理(体积计算公式)

体积计算公式物理(体积计算公式),第1张

您好,我就为大家解答关于体积计算公式物理,体积计算公式相信很多小伙伴还不知道,现在让我们一起来看看吧!1、圆柱体的体积公式:体积=底

您好,我就为大家解答关于体积计算公式物理,体积计算公式相信很多小伙伴还不知道,现在让我们一起来看看吧!

1、圆柱体的体积公式:体积=底面积×高 ,如果用h代表圆柱体的高,则圆柱=S底×h 长方体的体积公式:体积=长×宽×高 如果用a、b、c分别表示长方体的长、宽、高则 长方体体积公式为:V长=abc 正方体的体积公式:体积=棱长×棱长×棱长. 如果用a表示正方体的棱长,则 正方体的体积公式为V正=a·a·a=a³ 锥体的体积=底面面积×高÷3 V 圆锥=S底×h÷3 台体体积公式:V=[ S上+√(S上S下)+S下]h÷3 圆台体积公式:V=(R²+Rr+r²)hπ÷3 球缺体积公式=πh²(3R-h)÷3 球体积公式:V=4πR³/3 棱柱体积公式:V=S底面×h=S直截面×l (l为侧棱长,h为高) 棱台体积:V=〔S1+S2+开根号(S1S2)〕/3h 注:V:体积;S1:上表面积;S2:下表面积;h:高。

2、 ------ 几何体的表面积计算公式 圆柱体: 表面积:2πRr+2πRh 体积:πRRh (R为圆柱体上下底圆半径,h为圆柱体高) 圆锥体: 表面积:πRR+πR[(hh+RR)的平方根] 体积: πRRh/3 (r为圆锥体低圆半径,h为其高, 平面图形 名称 符号 周长C和面积S 正方形 a—边长 C=4a S=a2 长方形 a和b-边长 C=2(a+b) S=ab 三角形 a,b,c-三边长h-a边上的高s-周长的一半A,B,C-内角其中 s=(a+b+c)/2 S=ah/2=ab/2·sinC =[s(s-a)(s-b)(s-c)]1/2=a2sinBsinC/(2sinA) 四边形 d,D-对角线长α-对角线夹角 S=dD/2·sinα 平行四边形 a,b-边长h-a边的高α-两边夹角 S=ah=absinα 菱形 a-边长α-夹角D-长对角线长d-短对角线长 S=Dd/2=a2sinα 梯形 a和b-上、下底长h-高m-中位线长 S=(a+b)h/2=mh 圆 r-半径 d-直径 C=πd=2πr S=πr2=πd2/4 扇形 r—扇形半径 a—圆心角度数 C=2r+2πr×(a/360) S=πr2×(a/360) 弓形 l-弧长 S=r2/2·(πα/180-sinα) b-弦长 =r2arccos[(r-h)/r] - (r-h)(2rh-h2)1/2 h-矢高 =παr2/360 - b/2·[r2-(b/2)2]1/2 r-半径 =r(l-b)/2 + bh/2 α-圆心角的度数 ≈2bh/3 圆环 R-外圆半径 S=π(R2-r2) r-内圆半径 =π(D2-d2)/4 D-外圆直径 d-内圆直径 椭圆 D-长轴 S=πDd/4 d-短轴。

一、所有立体图形外面的面积之和叫做它的表面积。如:

1、圆柱体表面积为:S=C底h + 2πR^2,S=2πRh + 2πR^2。

(“C底”为底面圆的周长,R为底面圆的半径)

2、棱柱体表面积:S=S侧+ 2S底

3、圆柱体表面积(“U底”为底面圆的周长,R为底面圆的半径)

S=U底h + 2πR^2

S=2πRh + 2πR^2

4、棱锥体表面积(n为棱锥的斜棱条数,即侧面数)

S=nS侧(三角形) + S底

5、圆锥体表面积

S=S扇 + S底

S=1/2L(母线)2πR + πR^2

6、棱台体表面积(n为棱锥的棱条数,即侧面数)

S=nS侧(梯) + S上底 + S下底

7、圆台体表面积

注:设r为上底半径,R为下底半径,L为圆台母线;虚设a 为小扇形母线,则大扇形母线长为(a+L)

S=S侧(扇环) + S上底 + S下底

S=π(r^2+R^2+rl+Rl)=πr^2+πR^2+πrl+πRl

8、球体表面积:S=4πR^2

二、体积,几何学专业术语,是物件占有多少空间的量。体积的国际单位制是立方米。一件固体物件的体积是一个数值用以形容该物件在三维空间所占有的空间。一维空间物件(如线)及二维空间物件(如正方形)在三维空间中都是零体积的。

下面是各种不同图形体积计算公式:

1、长方体:

    (长方体体积=长×宽×高)

2、正方体:

     (正方体体积=棱长×棱长×棱长)

3、圆柱(正圆):

     圆柱(正圆)体积=圆周率×(底半径×底半径)×高

以上立体图形的体积都可归纳为:

     (底面积×高)

4、圆锥(正圆):

圆锥(正圆)体积=圆周率×底半径×底半径×高/3

5、角锥: 

     角锥体积=底面积×高/3

6、球体: 

     球体体积=4/3(圆周率×半径的三次方)

7、棱台: 

  注:V:体积;S1:上表面积;S2:下表面积;H:高。

扩展资料:

体积计算方法:

体积公式是用于计算体积的公式,即计算各种几何体体积的数学算式。比如:圆柱、棱柱、锥体、台体、球、椭球等。

体积公式:计算各种由平面和曲面所围成。

一般来说一个几何体是由面、交线(面与面相交处)、交点(交线的相交处或是曲面的收敛处)而构成的图形的体积的数学算式

参考资料:

-表面积

-体积

以下是常见的面积公式和体积公式:面积公式:- 矩形的面积:$A=l \\times w$,其中 $l$ 和 $w$ 分别为矩形的长度和宽度。- 正方形的面积:$A=s^2$,其中 $s$ 为正方形的边长。- 圆的面积:$A=\\pi r^2$,其中 $r$ 为圆的半径。- 椭圆的面积:$A=\\pi ab$,其中 $a$ 和 $b$ 分别为椭圆长半轴和短半轴长度。- 直角三角形的面积:$A=\\frac{1}{2}bh$,其中 $b$ 和 $h$ 分别为底边长度和高度。- 等边三角形的面积:$A=\\frac{\\sqrt{3}}{4}s^2$,其中 $s$ 为等边三角形的边长。- 梯形的面积:$A=\\frac{1}{2}(b_1+b_2)h$,其中 $b_1$ 和 $b_2$ 分别为梯形的上底和下底长度,$h$ 为梯形的高度。- 扇形的面积:$A=\\frac{1}{2}r^2\\theta$,其中 $r$ 为扇形的半径,$\\theta$ 为扇形的圆心角度数。体积公式:- 立方体的体积:$V=s^3$,其中 $s$ 为立方体的边长。- 正方体的体积:$V=s^3$,其中 $s$ 为正方体的边长。- 圆柱的体积:$V=\\pi r^2h$,其中 $r$ 为圆柱的底面半径,$h$ 为圆柱的高度。- 圆锥的体积:$V=\\frac{1}{3}\\pi r^2h$,其中 $r$ 为圆锥的底面半径,$h$ 为圆锥的高度。- 球的体积:$V=\\frac{4}{3}\\pi r^3$,其中 $r$ 为球的半径。- 棱柱的体积:$V=Bh$,其中 $B$ 为棱柱的底面积,$h$ 为棱柱的高度。- 棱锥的体积:$V=\\frac{1}{3}Bh$,其中 $B$ 为棱锥的底面积,$h$ 为棱锥的高度。- 球扇形的体积:$V=\\frac{1}{3}\\pi r^2h$,其中 $r$ 为球扇形的半径,$h$ 为球扇形的高度。

必背定义定理公式

体积和表面积

三角形的面积=底×高÷2。 公式 S= a×h÷2

正方形的面积=边长×边长 公式 S= a2

长方形的面积=长×宽 公式 S= a×b

平行四边形的面积=底×高 公式 S= a×h

梯形的面积=(上底+下底)×高÷2 公式 S=(a+b)h÷2

内角和:三角形的内角和=180度。

长方体的表面积=(长×宽+长×高+宽×高 ) ×2 公式:S=(a×b+a×c+b×c)×2

正方体的表面积=棱长×棱长×6 公式: S=6a2

长方体的体积=长×宽×高 公式:V = abh

长方体(或正方体)的体积=底面积×高 公式:V = abh

正方体的体积=棱长×棱长×棱长 公式:V = a3

圆的周长=直径×π 公式:L=πd=2πr

圆的面积=半径×半径×π 公式:S=πr2

圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S=ch=πdh=2πrh

圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。 公式:S=ch+2s=ch+2πr2

圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh

圆锥的体积=1/3底面×积高。公式:V=1/3Sh

算术

1、加法交换律:两数相加交换加数的位置,和不变。

2、加法结合律:a + b = b + a

3、乘法交换律:a × b = b × a

4、乘法结合律:a × b × c = a ×(b × c)

5、乘法分配律:a × b + a × c = a × b + c

6、除法的性质:a ÷ b ÷ c = a ÷(b × c)

7、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。 O除以任何不是O的数都得O。 简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。

8、有余数的除法: 被除数=商×除数+余数

方程、代数与等式

等式:等号左边的数值与等号右边的数值相等的式子叫做等式。 等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。

方程式:含有未知数的等式叫方程式。

一元一次方程式:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式。学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。

代数: 代数就是用字母代替数。

代数式:用字母表示的式子叫做代数式。如:3x =ab+c

分数

分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数

分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。

分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。

分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。

分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。

分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。

倒数的概念:1如果两个数乘积是1,我们称一个是另一个的倒数。这两个数互为倒数。1的倒数是1,0没有倒数。

分数除以整数(0除外),等于分数乘以这个整数的倒数。

分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小

分数的除法则:除以一个数(0除外),等于乘这个数的倒数。

真分数:分子比分母小的分数叫做真分数。

假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。

带分数:把假分数写成整数和真分数的形式,叫做带分数。

分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。

数量关系计算公式

单价×数量=总价 2、单产量×数量=总产量

速度×时间=路程 4、工效×时间=工作总量

加数+加数=和 一个加数=和+另一个加数

被减数-减数=差 减数=被减数-差 被减数=减数+差

因数×因数=积 一个因数=积÷另一个因数

被除数÷除数=商 除数=被除数÷商 被除数=商×除数

长度单位:

1公里=1千米 1千米=1000米

1米=10分米 1分米=10厘米 1厘米=10毫米

面积单位:

1平方千米=100公顷 1公顷=10000平方米

1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米

1亩=666666平方米。

体积单位

1立方米=1000立方分米 1立方分米=1000立方厘米

1立方厘米=1000立方毫米

1升=1立方分米=1000毫升 1毫升=1立方厘米

重量单位

1吨=1000千克 1千克= 1000克= 1公斤= 1市斤

什么叫比:两个数相除就叫做两个数的比。如:2÷5或3:6或1/3 比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。

什么叫比例:表示两个比相等的式子叫做比例。如3:6=9:18

比例的基本性质:在比例里,两外项之积等于两内项之积。

解比例:求比例中的未知项,叫做解比例。如3:χ=9:18

正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。如:y/x=k( k一定)或kx=y

反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。 如:x×y = k( k一定)或k / x = y

百分数

百分数:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。

小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。其实,把小数化成百分数,只要把这个小数乘以100%就行了。把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。

把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了。

把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。

要学会把小数化成分数和把分数化成小数的化发。

倍数与约数

最大公约数:几个数公有的约数,叫做这几个数的公约数。公因数有有限个。其中最大的一个叫做这几个数的最大公约数。

最小公倍数:几个数公有的倍数,叫做这几个数的公倍数。公倍数有无限个。其中最小的一个叫做这几个数的最小公倍数。

互质数: 公约数只有1的两个数,叫做互质数。相临的两个数一定互质。两个连续奇数一定互质。1和任何数互质。

通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。(通分用最小公倍数)

约分:把一个分数的分子、分母同时除以公约数,分数值不变,这个过程叫约分。

最简分数:分子、分母是互质数的分数,叫做最简分数。分数计算到最后,得数必须化成最简分数。

质数(素数):一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。

合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。1不是质数,也不是合数。

质因数:如果一个质数是某个数的因数,那么这个质数就是这个数的质因数。

分解质因数:把一个合数用质因数相成的方式表示出来叫做分解质因数。

倍数特征:

2的倍数的特征:各位是0,2,4,6,8。

3(或9)的倍数的特征:各个数位上的数之和是3(或9)的倍数。

5的倍数的特征:各位是0,5。

4(或25)的倍数的特征:末2位是4(或25)的倍数。

8(或125)的倍数的特征:末3位是8(或125)的倍数。

7(11或13)的倍数的特征:末3位与其余各位之差(大-小)是7(11或13)的倍数。

17(或59)的倍数的特征:末3位与其余各位3倍之差(大-小)是17(或59)的倍数。

19(或53)的倍数的特征:末3位与其余各位7倍之差(大-小)是19(或53)的倍数。

23(或29)的倍数的特征:末4位与其余各位5倍之差(大-小)是23(或29)的倍数。

倍数关系的两个数,最大公约数为较小数,最小公倍数为较大数。

互质关系的两个数,最大公约数为1,最小公倍数为乘积。

两个数分别除以他们的最大公约数,所得商互质。

两个数的与最小公倍数的乘积等于这两个数的乘积。

两个数的公约数一定是这两个数最大公约数的约数。

1既不是质数也不是合数。

用6去除大于3的质数,结果一定是1或5。

奇数与偶数

偶数:个位是0,2,4,6,8的数。

奇数:个位不是0,2,4,6,8的数。

偶数±偶数=偶数 奇数±奇数=奇数 奇数±偶数=奇数

偶数个偶数相加是偶数,奇数个奇数相加是奇数。

偶数×偶数=偶数 奇数×奇数=奇数 奇数×偶数=偶数

相临两个自然数之和为奇数,相临自然数之积为偶数。

如果乘式中有一个数为偶数,那么乘积一定是偶数。

奇数≠偶数

整除

如果c|a, c|b,那么c|(a±b)

如果,那么b|a, c|a

如果b|a, c|a,且(b,c)=1, 那么bc|a

如果c|b, b|a, 那么c|a

小数

自然数:用来表示物体个数的整数,叫做自然数。0也是自然数。

纯小数:个位是0的小数。

带小数:各位大于0的小数。

循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,这样的小数叫做循环小数。如3 141414

不循环小数:一个小数,从小数部分起,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做不循环小数。如3 141592654

无限循环小数:一个小数,从小数部分到无限位数,一个数字或几个数字依次不断的重复出现,这样的小数叫做无限循环小数。如3 141414……

无限不循环小数:一个小数,从小数部分起到无限位数,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做无限不循环小数。如3 141592654……

利润

利息=本金×利率×时间(时间一般以年或月为单位,应与利率的单位相对应)

利率:利息与本金的比值叫做利率。一年的利息与本金的比值叫做年利率。一月的利息与本金的比值叫做月利率。

回答者:Tennis90 - 试用期 一级 6-18 20:53

您觉得最佳答案好不好? 目前有 3 个人评价

100% (3)

0% (0)

欢迎分享,转载请注明来源:表白网

原文地址:https://h5.hunlipic.com/biaobai/3132645.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2024-02-07
下一篇2024-02-07

发表评论

登录后才能评论

评论列表(0条)

    保存