鸡兔同笼万能公式

鸡兔同笼万能公式,第1张

  常用的基本公式有:

 1、(总足数-鸡足数×总只数)÷每只鸡兔足数的差=兔数

 2、兔子只数=(总腿数-总头数×2) ÷2

 3、鸡的只数=(总头数×4-总腿数) ÷2

 4、(兔足数×总只数-总足数)÷每只鸡兔足数的差=鸡数

 5、解题思路和方法:解答此类题目一般都用假设法,可以先假设都是鸡,也可以假设都是兔。如果先假设都是鸡,然后以兔换鸡;如果先假设都是兔,然后以鸡换兔。这类问题也叫置换问题。通过先假设,再置换,使问题得到解决。

鸡兔同笼的公式:

如果已知鸡(a)兔(b)只数的和(h)以及腿数的和(t)时:

b=(t/2)-h

a=h-b

比如,鸡兔49,有腿100条,鸡兔各几个

兔: b=(100/2)-49=1只

鸡: a=49-1=48只

用假设法”来求解。

即假设全是鸡或是全是兔,然后根据出现的足数差,推算出鸡或兔的只数。最后求出另一种动物(鸡或兔)的只数。

基本数量关系式,可分两个方面:

①假设全是鸡,则有:兔的只数=(总足数-2×总头数)÷2;鸡的只数=总头数-兔子只数。

②假设全是兔,则有:鸡的只数=(4×总头数-总足数)÷2;兔的只数=总头数-鸡的只数。

鸡兔同笼公式:

公式1:

(兔的脚数×总只数-总脚数)÷(兔的脚数-鸡的脚数)=鸡的只数

总只数-鸡的只数=兔的只数

公式2:

(总脚数-鸡的脚数×总只数)÷(兔的脚数-鸡的脚数)=兔的只数

总只数-兔的只数=鸡的只数

公式3:

总脚数÷2—总头数=兔的只数

总只数—兔的只数=鸡的只数

公式4:

鸡的只数=(4×鸡兔总只数-鸡兔总脚数)÷2兔的只数=鸡兔

总只数-鸡的只数

公式5:

兔总只数=(鸡兔总脚数-2×鸡兔总只数)÷2鸡的只数=鸡兔

总只数-兔总只数

公式6:

(头数x4-实际脚数)÷2=鸡

公式7 :

4×+2(总数-x)=总脚数(x=兔,总数-x=鸡数,用于方程)

解题方法:假设法 ,方程法, 抬腿法

鸡兔同笼是中国古代的数学名题之一。大约在1500年前,《孙子算经》中就记载了这个有趣的问题。书中是这样叙述的:   

今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头,从下面数。有94只脚。问笼中各有多少只鸡和兔?

假设法

假设全是鸡:2×35=70(只)

鸡脚比总脚数少:94-70=24 (只)

兔子比鸡多的脚数:4-2=2(只)

兔子的只数:24÷2=12 (只)

鸡的只数:35-12=23(只)

方程法

一元一次方程

解:设兔有x只,则鸡有(35-x)只。

解得

鸡:35-12=23(只)

解:设鸡有x只,则兔有(35-x)只。

解得

兔:35-23=12(只)

答:兔子有12只,鸡有23只。

注:通常设方程时,选择腿的只数多的动物,会在套用到其他类似鸡兔同笼的问题上,好算一些。

抬腿法:

方法一

假如让鸡抬起一只脚,兔子抬起2只脚,还有94÷2=47(只)脚。笼子里的兔就比鸡的脚数多1,这时,脚与头的总数之差47-35=12,就是兔子的只数。

方法二

假如鸡与兔子都抬起两只脚,还剩下94-35×2=24只脚 , 这时鸡是屁股坐在地上,地上只有兔子的脚,而且每只兔子有两只脚在地上,所以有24÷2=12只兔子,就有35-12=23只鸡。

方法三

我们可以先让兔子都抬起2只脚,那么就有35×2=70只脚,脚数和原来差94-70=24只脚,这些都是每只兔子抬起2只脚,一共抬起24只脚,用24÷2得到兔子有12只,用35-12得到鸡有23只。

鸡兔同笼,是中国古代著名典型趣题之一,记载于《孙子算经》之中。鸡兔同笼问题,是小学奥数的常见题型。许多小学算术应用题都可以转化成这类问题,或者用解它的典型解法--"假设法"来求解。因此很有必要学会它的解法和思路。通常是假设法比较简单易懂一点。

1、假设全是兔子

鸡的只数=(总共的头×4-总共的脚)÷(4-2)兔的只数=总共的头-鸡的只数 2、假设全是鸡

兔子的只数=(-总共的脚-总共的头×2)÷(4-2)鸡的只数=总共的头-兔的只数

解题方法:假设法 ,方程法, 抬腿法

鸡兔同笼是中国古代的数学名题之一。大约在1500年前,《孙子算经》中就记载了这个有趣的问题。书中是这样叙述的:   

今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头,从下面数。有94只脚。问笼中各有多少只鸡和兔?

假设法

假设全是鸡:2×35=70(只)

鸡脚比总脚数少:94-70=24 (只)

兔子比鸡多的脚数:4-2=2(只)

兔子的只数:24÷2=12 (只)

鸡的只数:35-12=23(只)

方程法

一元一次方程

解:设兔有x只,则鸡有(35-x)只。

解得

鸡:35-12=23(只)

解:设鸡有x只,则兔有(35-x)只。

解得

兔:35-23=12(只)

答:兔子有12只,鸡有23只。

注:通常设方程时,选择腿的只数多的动物,会在套用到其他类似鸡兔同笼的问题上,好算一些。

抬腿法:

方法一

假如让鸡抬起一只脚,兔子抬起2只脚,还有94÷2=47(只)脚。笼子里的兔就比鸡的脚数多1,这时,脚与头的总数之差47-35=12,就是兔子的只数。

方法二

假如鸡与兔子都抬起两只脚,还剩下94-35×2=24只脚 , 这时鸡是屁股坐在地上,地上只有兔子的脚,而且每只兔子有两只脚在地上,所以有24÷2=12只兔子,就有35-12=23只鸡。

方法三

我们可以先让兔子都抬起2只脚,那么就有35×2=70只脚,脚数和原来差94-70=24只脚,这些都是每只兔子抬起2只脚,一共抬起24只脚,用24÷2得到兔子有12只,用35-12得到鸡有23只。

鸡兔同笼,是中国古代著名典型趣题之一,记载于《孙子算经》之中。鸡兔同笼问题,是小学奥数的常见题型。许多小学算术应用题都可以转化成这类问题,或者用解它的典型解法--"假设法"来求解。因此很有必要学会它的解法和思路。通常是假设法比较简单易懂一点。

解答鸡兔问题一般采用假设法,假设全是一种动物(如全是“鸡”或全是“兔”,然后根据出现的腿数差,可推算出某一种的头数。

解题规律

(总腿数-鸡腿数×总头数)÷一只鸡兔腿数的差=兔子只数

兔子只数=(总腿数-2×总头数)÷2

如果假设全是兔子,可以有下面的式子:

鸡的只数=(4×总头数-总腿数)÷2

兔的头数=总头数-鸡的只数

鸡兔同笼公式:

解法1:

(兔的脚数×总只数–总脚数)÷(兔的脚数–鸡

的脚数)=鸡的只数;总只数–鸡的只数=兔的只数。

解法2:

(总脚数–鸡的脚数×总只数)÷(兔的脚数–鸡的脚数)=兔的只数;总只数-兔的只数=鸡的只数。

欢迎分享,转载请注明来源:表白网

原文地址:https://h5.hunlipic.com/biaobai/3121307.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2024-02-06
下一篇2024-02-06

发表评论

登录后才能评论

评论列表(0条)

    保存