费米能级”以下所有量子态。绝对零度下,玻色粒子占据费米能级”以下所有量子态。在接近绝对零度时,玻色子会全部占据最低能级形成“玻色-爱因斯坦凝聚”,而费米子会占据“费米能级”以下所有量子态,总之它们的能量都不为零。
好嘛。。 玻色凝聚还问
你问题就没对。。。
一般都说玻色爱因斯坦凝聚 很少人提费米凝聚的 因为费米子不能像玻色子那样表现出很好的凝聚效果来。
费米子不能都处在最低的能态,费米子只能有有限个粒子处于相同的状态,所以只能一个个往能级上面排。所以你再咋个降温都是那么多的粒子在最低能态。 而如果是玻色子,可以有很多个粒子处于相同的态,比如最低能态,当温度低于临界温度,再降温的话粒子就都去填充最低能级了。
所有内禀属性都相同的粒子叫做全同粒子,量子理论表明,由全同粒子组成的系统遵从两种不同的统计规律,一种是玻色-爱因斯坦统计,相应的粒子称为玻色子;另一种是费米-狄拉克统计,相应的粒子称为费米子。
所有内禀属性都相同的粒子叫做全同粒子,量子理论表明,由全同粒子组成的系统遵从两种不同的统计规律,一种是玻色-爱因斯坦统计,相应的粒子称为玻色子;另一种是费米-狄拉克统计,相应的粒子称为费米子。
研究发现,所有玻色子的自旋量子数(简称自旋)都是0或整数,所有费米子的自旋都是半整数。基本费米子分为 2 类:夸克和轻子。而这 2 类基本费米子,又分为合共 24 种味 (flavour):12 种夸克:包括上夸克 (u)、下夸克 (d)、奇夸克 (s)、粲夸克 (c)、底夸克 (b)、顶夸克 (t),及它们对应的 6 种反粒子。
12 种轻子:包括电子 (e)、渺子 (μ)、陶子 (τ)、、中微子νe、中微子νμ、中微子ντ,及对应的 6 种反粒子,包括 3 种反中微子。中子、质子:都是由三种夸克组成,自旋为1/2。夸克:上夸克 (u)、下夸克 (d)、奇夸克 (s)、粲(càn)夸克 (c)、底夸克 (b)、顶夸克 (t),及它们对应的 6 种反粒子。
在一组由全同粒子组成的体系中,如果在体系的一个量子态(即由一套量子数所确定的微观状态)上只容许容纳一个粒子,这种粒子称为费米子。或者说自旋为半奇数(1/2,3/2…)的粒子统称为费米子,服从费米-狄拉克统计。费米子满足泡利不相容原理,即不能两个以上的费米子出现在相同的量子态中。 轻子,核子和超子的自旋都是1/2,因而都是费米子。自旋为3/2,5/2,7/2等的共振粒子也是费米子。中子、质子都是由三种夸克组成,自旋为1/2。奇数个核子组成的原子核。因为中子、质子都是费米子,故奇数个核子组成的原子核自旋是半整数。
基本介绍 中文名 :费米子 外文名 :fermion 提出者 :由保罗·狄拉克给出,纪念恩里科·费米在这领域所作的杰出贡献。 提出时间 :1937 套用学科 :粒子物理 特点 :遵守泡利不相容原理 属性 :质量、能量、磁矩和自旋 例子 :中子,质子,电子等 提出,提出,提出者,简介,性质,与玻色子的联系,发展,相关资料,其他相关理论,四费米子作用,重费米子体系,费米气体模型, 提出 提出 1937年,随着量子力学的兴起,义大利理论物理学家Ettore Majorana提出可能存在一种新型的奇特粒子,即名为Majorana费米子的粒子。经过75年的追寻,研究人员终于发现了Majorana费米子存在的一个可靠证据。而这一发现就如同找到了一把通往拓扑量子计算时代的 “钥匙”。 早在Majorana之前,奥地利物理学家Erwin Schrodinger就提出了描写量子行动和互动的方程式。英国物理学家Paul Dirac点缀了该方程式,使其能够适用于费米子,并且将量子力学和爱因斯坦的相对论结合在了一起。同时Dirac的研究还指出了反物质的存在,并暗示某些粒子可以作为其本身的反粒子,如光子,但费米子却被认为并非此类粒子。后来,Majorana延伸了Dirac方程式,认为可能存在一种新的费米子能够作为其本身的反粒子,这种粒子就是Majorana费米子。然而,Majorana费米子始终披着神秘面纱,从20世纪到21世纪,全世界物理学家一直在努力寻找它。Majorana也曾提出,一种中微子——电中性粒子的些微聚集,可能刚好符合他提出的这种假设粒子的要求。 提出者 恩利克·费米 (义大利文原名:Enrico Fermi,1901年9月29日—1954年11月28日,享年53岁),美籍义大利著名物理学家、美国芝加哥大学物理学教授,1938年物理诺贝尔奖得主。 费米领导小组在芝加哥大学Stagg Field 建立人类第一台可控核反应堆(芝加哥一号堆,Chicago Pile-1),人类从此迈入原子能时代,费米也被誉为“原子能之父”。 费米在理论和实验方面都有第一流建树,这在现代物理学家中是屈指可数的。100号化学元素镄、美国芝加哥著名的费米实验室(Fermilab)、芝加哥大学的费米研究院(The Enrico Fermi Institue)[5]都是为纪念他而命名的。费米一生的最后几年,主要从事高能物理的研究。1949年,揭示宇宙线中原粒子的加速机制,研究了π介子、μ子和核子的相互作用,提出宇宙线起源理论。1952年,发现了第一个强子共振──同位旋四重态。1949年,与杨振宁合作,提出基本粒子的第一个复合模型。 简介 费米子(fermion):费米子是依随费米-狄拉克统计、角动量的自旋量子数为半奇数整数倍的粒子。 费米子 费米子得名于义大利物理学家费米,遵从泡利不相容原理。根据标准理论,费米子均是由一批基本费米子组成的,而基本费米子则不可能分解为更细小的粒子。 性质 基本费米子分为 2 类:夸克和轻子。而这 2 类基本费米子,又分为合共 24 种味 (flavour):12 种夸克:包括上夸克 (u)、下夸克 (d)、奇夸克 (s)、粲夸克 (c)、底夸克 (b)、顶夸克 (t),及它们对应的 6 种反粒子。 12 种轻子:包括电子 (e)、渺子 (μ)、陶子 (τ)、、中微子νe、中微子νμ、中微子ντ,及对应的 6 种反粒子,包括 3 种反中微子。中子、质子:都是由三种夸克组成,自旋为1/2。夸克:上夸克 (u)、下夸克 (d)、奇夸克 (s)、粲(càn)夸克 (c)、底夸克 (b)、顶夸克 (t),及它们对应的 6 种反粒子。 在一组由全同粒子组成的体系中,如果在体系的一个量子态(即由一套量子数所确定的微观状态)上只容许容纳一个粒子,这种粒子称为费米子。费米子所遵循的统计法称为费米统计法。费米统计法的分布函式为式中n(ε)为体系在温度T达热平衡时处于能态ε的粒子数;α为温度和粒子总数的函式。奇数个核子组成的原子核(因为中子、质子都是费米子,故奇数个核子组成的原子核自旋是半整数。)由全同费米子组成的孤立系统,处于热平衡时,分布在能级εi的粒子数为,Ni=gi/(e^(α+βεi)+1) 。α为拉格朗日乘子、β=1/(kT),有体系温度,粒子密度和粒子质量决定。εi为能级i的能量,gi为能级的简并度。 与玻色子的联系 根据自旋倍数的不同,科学家把基本粒子分为玻色子和费米子两大类。费米子是像电子一样的粒子,有半整数自旋(如1/2,3/2,5/2等);而玻色子是像光子一样的粒子,有整数自旋(如0,1,2等)。这种自旋差异使费米子和玻色子有完全不同的特性。没有任何两个费米子能有同样的量子态:它们没有相同的特性,也不能在同一时间处于同一地点;而玻色子却能够具有相同的特性。 基本粒子中所有的物质粒子都是费米子,是构成物质的原材料(如轻子中的电子、组成质子和中子的夸克、中微子);而传递作用力的粒子(光子、介子、胶子、W和Z玻色子)都是玻色子。 费米子 发展 第六种物质形态诞生 人类生存的世界,是一个物质的世界。过去,人们只知道物质有三态,即气态、液态和固态。20世纪中期,科学家确认物质有第四态,即电浆态(pla a)。1995年,美国标准技术研究院和美国科罗拉多大学的科学家组成的联合研究小组,首次创造出物质的第五态,即“玻色—爱因斯坦凝聚态”。为此,2001年度诺贝尔物理学奖授予了负责这项研究的三位科学家。 2004年1月29日,又是这个联合研究小组宣布,他们创造出物质的第六种形态———费米子凝聚态(fermioniondensate)。讯息传出,国际物理学界为之振奋。专家们认为,这一成果为人类认识物质世界打开了又一扇大门,具有重大的理论和实践意义,将成为年度重大科技成果之一。 研究小组负责人德博拉·金30岁,2003年获得美国麦克阿瑟基金会颁发的“大天才”奖。她表示,这项成果有助于下一代超导体的诞生。而下一代超导体技术可在电能输送、超导磁悬浮列车、超导计算机、地球物理勘探、生物磁学、高能物理研究等众多领域和学科中大显身手。 形态的区别 通常所见的物质是由分子、原子、离子构成的。处于气态的物质,其分子与分子之间距离很远。而构成液态物质的分子彼此靠得很近,其密度要比气态的大得多。固态物质的构成元素是以原子或离子状态存在的,原子或离子一个挨着一个,相互牵拉,这就是固体比液体硬的原因。 被激发的电离气体达到一定的电离度之后便处于导电状态。电离气体中每一带电粒子的运动都会影响到其周围带电粒子,同时也受到其他带电粒子的约束。由于电离气体内正负电荷数相等,这种气体状态被称为电浆态。 所谓玻色—爱因斯坦凝聚,是科学巨匠爱因斯坦在70年前预言的一种新物态。这里的“凝聚”与日常生活中的凝聚不同,它表示原来不同状态的原子突然“凝聚”到同一状态。玻色—爱因斯坦凝聚态物质由成千上万个具有单一量子态的超冷粒子的集合,其行为像一个超级大原子,由玻色子构成。这一物质形态具有的奇特性质,在晶片技术、精密测量和纳米技术等领域都有美好的套用前景。 创造 由于没有任何两个费米子能拥有相同的量子态,费米子的凝聚一直被认为不可能实现。物理学家找到了一个克服以上障碍的方法,他们将费米子成对转变成玻色子。费米子对起到了玻色子的作用,所以可让气体突然冷凝至玻色—爱因斯坦凝聚态。这一研究为创造费米子凝聚态铺平了道路。 费米子 相关资料 1937年,随着量子力学的兴起,义大利理论物理学家Ettore Majorana提出可能存在一种新型的奇特粒子,即名为Majorana费米子的粒子。经过75年的追寻,研究人员终于发现了Majorana费米子存在的一个可靠证据。而这一发现就如同找到了一把通往拓扑量子计算时代的 “钥匙”。 费米子 早在Majorana之前,奥地利物理学家 Erwin Schrodinger就提出了描写量子行动和互动的方程式。英国物理学家Paul Dirac点缀了该方程式,使其能够适用于费米子,并且将量子力学和爱因斯坦的相对论结合在了一起。同时Dirac的研究还指出了反物质的存在,并暗示某些粒子可以作为其本身的反粒子,如光子,但费米子却被认为并非此类粒子。后来,Majorana延伸了Dirac方程式,认为可能存在一种新的费米子能够作为其本身的反粒子,这种粒子就是Majorana费米子。然而,Majorana费米子始终披着神秘面纱,从20世纪到21世纪,全世界物理学家一直在努力寻找它。Majorana也曾提出,一种中微子——电中性粒子的些微聚集,可能刚好符合他提出的这种假设粒子的要求。 几十年过去了,理论物理学家发现调整大量电子的移动也许能够模仿Majorana费米子,而且,被称为“准粒子”的这些集体运动的表现与同类型的基本粒子非常像。日前,荷兰代尔夫特理工大学物理学家Leo Kouwenhoven和同事发现了这些准粒子的迹象,并将研究报告线上发表在《科学》上。 Kouwenhoven研究小组专门设计制造了实验使用的电晶体。早前的理论假设就提到,如果其中一个电极是超导体,并且电流在磁场中流过一个特殊的半导体纳米线,就可能促使电子在纳米线的另一端表现得像Majorana费米子一般。理论还进一步指出,如果研究者试图在磁场外从标准电极中输送电流到超导电极,电子可能在超导体中反弹,因此超导电极中检测不到电流。但是,如果磁场开启,将能触发Majorana费米子的存在,这样电子将会进入超导体,并在电流中出现跳跃。Kouwenhoven研究小组则发现了这一电流尖峰。而且,当研究人员改变诱发Majorana费米子的任何一个条件时,例如关闭磁场,用金属电极更换超导电极,第二个电极中的电流尖峰就会消失不见。 然而,这一结果并不能直接证实Majorana费米子的发现。美国加利福尼亚大学理论物理学家Jason Alicea认为,这个荷兰研究小组为消除其他可能的解释做出了非常引人瞩目的工作。但是,他也指出,该研究并不能完全证实Majorana费米子的存在。如果找到了这种“神奇粒子”,将使在固体中实现拓扑量子计算成为可能,人类也将进入拓扑量子计算时代。因为当相互移动两个Majorana费米子时,它们能够“记得”自己以前的位置,这一性质可以用来编码量子级别数据。 其他相关理论 四费米子作用 四费米子作用理论认为,弱相互作用是弱流与弱流的相互作用。每一个弱流由正反两个费米子构成,因此是四个费米子的相互作用。 1、将不同粒子参与的弱相互作用统一为普适的相互作用。理论只需要一个普适的相互作用常数。 2、弱流是带有手征的而不是手征变换不变的,解释了弱相互作用对空间反演对称性的破坏。 四费米子相互作用后来被弱相互作用的规范理论取代。 重费米子体系 重费米子体系主要包括一些含有稀土金属如铈、镱,锕族金属元素如铀的金属化合物。这类化合物在低温下表现为超导,反铁磁或铁磁,或者费米液体的行为,但是有很高的比热,通常认为准粒子有很高的质量,因此叫做重费米子材料。 费米气体模型 费米气体模型用来描述由大量费米子组成的系统。 系统中的粒子认为全同且不可分辨。费米子的角动量的自旋量子数为半奇数整数倍,其本征波函式反对称。导致在费米子的某一个量子态上,最多只能容纳一个粒子(假设可以容纳多个的话,因为粒子的不可分辨性,调换任意两个粒子的位置,波函式应该不变,即Ψ = - Ψ,得Ψ=0,显然矛盾了)。这就是费米子所遵守的泡利不相容原理。 在不相容原理的基础上,可进一步按热力学定律得出费米的分布规律:费米-狄拉克分布。(公式比较复杂,我就不打了)费米气体中的所有粒子服从该分布。金属自由电子气就是典型的费米气体。 费米子气体模型和理想气体模型也有一定联系,费米气遵守费米-狄拉克统计,而理想气体模型中的粒子遵守麦克斯韦-波尔兹曼统计,在高温和低密度条件下,能级数远多于粒子数,费米-狄拉克分布过渡到经典的麦克斯韦-玻耳兹曼分布。
费米出生于意大利首都罗马,父亲阿尔贝托·费米是通讯部的职员。他在中学时代就展现了在数学和物理方面的才能。1918年获得比萨高等师范学校的奖学金。四年之后他在比萨大学获得了物理学博士,导师是普契安提教授。
1923年到1924年期间,他通过意大利政府和洛克菲勒基金会的资助访问了德国哥廷根大学的马克思·玻恩教授和荷兰莱顿大学的艾伦法斯特教授。1924年,他回到意大利,在佛罗伦萨大学任职数学物理和力学科讲师。
1926年,费米发现了一种新的统计定律—费米-狄拉克统计。他发现这种统计适用于所有遵循泡利不兼容原理的粒子,这些粒子被称为费米子。费米-狄拉克统计和玻色子所遵循的玻色-爱因斯坦统计是量子世界的基本统计规律。
1927年,费米当选为罗马大学的理论物理学教授。他在这个教席上一直任职到1938年。由于他的夫人劳拉是犹太裔,为逃避墨索里尼法西斯政府的迫害,他们在1938年接受诺贝尔奖之后移居到了美国。1938年到1942年期间,费米任纽约哥伦比亚大学教授。从1942年直至去世,他是芝加哥大学的物理学教授。
在罗马大学的早期时间费米主要的研究课题是电动力学和光谱学,但是随后他把研究重点放在了原子核本身而不是核外电子上。1934年他在原先的辐射理论和泡利的中微子理论基础上提出了β衰变的费米理论。在人工放射性被发现后不久,他实验演示了几乎所有元素在中子轰炸下都会发生核变化。这个工作促使了慢中子和核裂变的发现。
在1939年哈恩和斯特拉斯曼发现核裂变后,费米马上意识到次级中子和链式反应的可能性。1942年12月2日他在芝加哥大学体育场的壁球馆试验成功了首座受控核反应堆。在二战期间第一枚原子弹的建造过程中(曼哈顿计划),他是主要领导者之一。
1945年7月16日晚上,原子弹在内华达州的沙漠引爆成功时,费米在原子弹试爆现场附近,突然跃起向空中撒了一把碎纸片,爆炸后气浪将纸片急速地卷走,他紧追纸片跑了几步,并根据纸片飞出的距离估算了核爆炸的“当量数”,大声喊著:“成功了!它的爆炸威力相当于二万吨TNT炸药。”后来证明是惊人的准确。
第二次世界大战之后,费米的主要研究方向是高能物理,他在介子核相互作用和宇宙射线的来源等方面都做出了开创性的工作。费米于1954年在芝加哥去世。
纪念
由于在人工放射性和慢中子方面的工作,费米被授予了1938年诺贝尔物理学奖。他还是一位杰出的老师。他的学生中有六位获得过诺贝尔物理学奖。为纪念这位物理学家,费米国家实验室和芝加哥大学的费米研究所都以他的名字命名。2008年6月11日发射的大面积伽玛射线空间望远镜于同年8月26日改名为费米伽玛射线空间望远镜做为他身为高能物理先驱的纪念。
印度有一个物理学家波色,研究量子力学的人必然知道他的名字,因为粒子被分为两大类,期中一类就被命名为玻色子,而另一类叫费米子。他的研究为玻色-爱因斯坦统计及玻色-爱因斯坦凝聚理论提供了基础。后来三个物理学家仅仅通过实验证实了波色-爱因斯坦凝聚态就获得了2001年诺贝尔物理奖。所以他没有得到诺贝尔奖确实有点冤枉。
萨特延德拉·纳特·玻色(Satyendra Nath Bose,1894年1月1日—1974年2月4日) ,印度物理学家,专门研究数学物理。
萨特延德拉·纳特·玻色最著名的研究是1920年代早期的量子物理研究,该研究为玻色-爱因斯坦统计及玻色-爱因斯坦凝聚理论提供了基础。玻色子就是以他的名字命名的。
著名物理学家贾因特·纳里卡(Jayant Narlikar)在他的《科学边缘》一书中写道:“S·N·玻色的粒子物理研究(约1922年),其中阐明了光子的表现,并为统计遵从量子规则的微系统提供了机会,是二十世纪印度科学贡献的前十名之一,是可被视为诺贝尔奖级别的研究。”
生平情况
早年玻色生于印度西孟加拉邦的加尔各答,是七名孩子中的长子。他的父亲苏伦特拉纳特·玻色(Surendranath Bose)曾任职于东印度铁路工程部。
玻色就读于加尔各答印度教学校(Hindu School),后就读于也位于加尔各答的院长学院(Presidency College),他在这两所当地知名学府时都获得了最高分。他接触了一些优秀的老师,如贾加迪什·钱德拉·玻色(Jagdish Chandra Bose,无血缘关系)及普拉富尔拉·钱德拉·罗伊(Prafulla Chandra Roy),他们都鼓舞了玻色要立好远大志向。他于1911年至1921年任加尔各答大学物理学系讲师。他于1921年转到了当时成立不久的达卡大学物理学系(现位于孟加拉境内),也是任职讲师。
玻色写给爱因斯坦的信
玻色于1924年写了一篇推导普朗克量子辐射定律的论文,当中并没有提到任何古典物理。在开始时未能发表的挫折下,他把论文直接寄给身在德国的艾尔伯特·爱因斯坦。爱因斯坦意识到这篇论文的重要性,不但亲自把它翻译成德语,还以玻色的名义把论文递予名望颇高的《德国物理学刊》("Zeitschrift für Physik")发表。就是因为此次赏识,玻色能够第一次离开印度,前往欧洲并逗留两年,期间与路易·德布罗伊、居里夫人及爱因斯坦工作过。
玻色于1926年回到达卡,任教授兼物理学系主任,并继续留在达卡大学教学至1945年。那时候他回到了加尔各答,在加尔各答大学教学至1956年,他退休时被授予名誉教授头衔。
以后的研究
在这以后玻色的概念在物理学界广受好评,达卡大学于1924年允许他休假到欧洲去。他在法国度过了一年,跟居里夫人共事,也跟多位知名科学家见过面。之后他又多游学一年,在柏林跟爱因斯坦共事。在1926年他回到达卡大学之后,就立即于被擢升为教授。他并没有博士学位,一般来说他是不够资格当教授的,但是爱因斯坦还是推荐了他。他的研究范围很广,从X射线晶体学到统一场理论都有涉猎。他还跟梅格·纳德·萨哈(Megn Nad Saha)一起发表了真实气体用的一条状态方程。
1949
除物理以外,他还研究过生物化学及文学(孟加拉语及英语)。他还深入地学习过化学、地质学、动物学、人类学、工程学及其他科学。作为一个有孟加拉背景的人,他花了不少时间把孟加拉语推广为教学语言,把科学论文翻成孟加拉语,以及推广该地区的发展。
玻色于1944年被选为印度科学代表大会主席。
他于1958年获选为英国皇家学会会员。
没错的错误
有一次玻色在达卡大学讲课,课题是光电效应及紫外灾难,玻色打算向学生展示当时理论的不适之处,因为理论预测的结果跟实验不符。在讲课期间,玻色在应用理论时犯了错,意想不到的是居然得出一个跟实验一致的预测。(他后来将讲课内容改写成了一篇短文,叫《普朗克定律与光量子假说》。)
那错误是一个很简单的错──跟认为掷两枚硬币得两正面的概率是三分之一是一样的──任何对统计学有一点基础理解的人都知道有问题。然而,预测结果跟实验吻合,且玻色意识到这毕竟有可能不是错误。他首次提出麦克斯韦-玻尔兹曼分布对微观粒子不会成立,这是因为由海森堡测不准原理所导致的变动此时会大得足够构成影响。故此他强调在每个体积为h的位相空间中找到粒子的概率而舍弃粒子不同的位置和动量。
好几份物理学刊都没有为玻色发表论文。他们认为他所展现的是一个简单错误,而且玻色的发现被忽略了。灰心的他写了封信给爱因斯坦,爱因斯坦马上就同意他的观点。爱因斯坦写了一篇支持玻色理论的论文,递予《德国物理学刊》发表,并要求把这两篇论文一同发表,这时候玻色的理论终于受到推崇。这是1924年的事。玻色早前曾经把爱因斯坦的广义相对论论文从德语翻译成英语。有人说玻色把爱因斯坦当成他的“祖师”。
玻色的“错误”能得出正确结果,这是因为光子们是不能被分辨出来的,也就是不能把任何两个同能量的光子当作两个能被明确识别的光子。比方说,如果在另一个宇宙里,硬币表现得像光子及其他玻色子一样,掷出两正的概率会的而且确是三分之一(正反=反正)。玻色的“错误”现在被称为玻色-爱因斯坦统计。
爱因斯坦采取了这个概念,并把它延伸到原子去。这为预测某个现象的存在铺好了路,这个现象就是现在的玻色-爱因斯坦凝聚,在这现象中一组高密度的玻色子(自旋为整数的粒子,以玻色命名)在超低温状态中会成为玻色-爱因斯坦凝聚体,于1995年被实验所证实。
轶事
1有一次大科学家尼尔斯·玻尔正在讲课。玻色列席。讲课者讲着讲着,中途在解释某一点时有难处。他一直都在黑板上写着;他停下来,转向玻色,问道,“玻色教授能帮我个忙吗?”讲课期间萨特延德拉都在闭着眼坐着。听众们都忍不住向玻尔教授的话报以微笑。令他们惊奇的是,玻色张开了眼睛;一下子就把讲课者的难题给解决了。之后他坐下来又把眼睛闭上了!
21927年在意大利科莫举行了科莫会议,除了爱因斯坦、薛定谔和狄拉克以外,当代最著名了物理学家,包括玻尔、海森堡、普朗克、洛伦兹、德布罗意等都出席了。但是玻色却没有能够出席,原因很离奇。因为当时大会向远在印度的玻色教授发出了邀请函,寄往了加尔各答大学,署名“寄给加尔各答大学的玻色教授”。但是当时玻色已经离开加尔各答大学去了达卡大学,而加尔各答大学还有一位姓玻色,全名叫做DM玻色的教授,而当时的通讯并不如现在发达,于是这位名不见经传的玻色就代替了当时已经很有名望的SN玻色,参加了众星云集的科莫大会。
玻色–爱因斯坦凝聚 (Bose–Einstein condensate)是玻色子原子在冷却到接近绝对零度所呈现出的一种气态的、超流性的物质状态(物态)。1995年,麻省理工学院的沃夫冈·凯特利与科罗拉多大学鲍尔德分校的埃里克·康奈尔和卡尔·威曼使用气态的铷原子在170 nK的低温下首次获得了玻色-爱因斯坦凝聚。在这种状态下,几乎全部原子都聚集到能量最低的量子态,形成一个宏观的量子状态。
理论
所有原子的量子态都束聚于一个单一的量子态的状态被称为玻色凝聚或玻色-爱因斯坦凝聚。1920年代,萨特延德拉·纳特·玻色和阿尔伯特·爱因斯坦以玻色关于光子的统计力学研究为基础,对这个状态做了预言。
2005年7月22日,乌得勒支大学的学生罗迪·玻因克在保罗·埃伦费斯特的个人档案中发现了1924年12月爱因斯坦手写的原文的草稿。玻色和爱因斯坦的研究的结果是遵守玻色-爱因斯坦统计的玻色气体。玻色-爱因斯坦统计是描写玻色子的统计分布的理论。玻色子,其中包括光子和氦-4之类的原子,可以分享同一量子态。爱因斯坦推测将玻色子冷却到非常低的温度后它们会“落入”(“凝聚”)到能量最低的可能量子态中,导致一种全新的相态。
发现
1938年,彼得·卡皮查、约翰·艾伦和冬·麦色纳(Don Misener)发现氦-4在降温到22 K时会成为一种叫做超流体的新的液体状态。超流的氦有许多非常不寻常的特征,比如它的黏度为零,其漩涡是量子化的。很快人们就认识到超液体的原因是玻色-爱因斯坦凝聚。事实上,康奈尔和威曼发现的气态的玻色-爱因斯坦凝聚呈现出许多超流体的特性。
“真正”的玻色-爱因斯坦凝聚最早是由康奈尔和威曼及其助手在天体物理实验室联合研究所于1995年6月5日制造成功的。他们使用激光冷却和磁阱中的蒸发冷却将约2000个稀薄的气态的铷-87原子的温度降低到170 nK后获得了玻色-爱因斯坦凝聚。四个月后,麻省理工学院的沃尔夫冈·克特勒使用钠-23独立地获得了玻色-爱因斯坦凝聚。克特勒的凝聚较康奈尔和威曼的含有约100倍的原子,这样他可以用他的凝聚获得一些非常重要的结果,比如他可以观测两个不同凝聚之间的量子衍射。2001年康奈尔、威曼和克特勒为他们的研究结果共享诺贝尔物理奖。
康奈尔、威曼和克特勒的结果引起了许多试验项目。比如2003年11月因斯布鲁克大学的鲁道尔夫·格里姆、科罗拉多大学鲍尔德分校的德波拉·金和克特勒制造了第一个分子构成的玻色-爱因斯坦凝聚。
与一般人们遇到的其它相态相比,玻色-爱因斯坦凝聚非常不稳定。玻色-爱因斯坦凝聚与外界世界的极其微小的相互作用足以使它们加热到超出临界温度,分解为单一原子的状态,因此在短期内不太有机会出现实际应用。
2016年5月17日,来自澳大利亚新南威尔士大学和澳大利亚国立大学的研究团队首次使用人工智能制造出了玻色-爱因斯坦凝聚。人工智能在此项实验中的作用是调节要求苛刻的温度和防止原子逃逸的激光束。
我们知道,常温下的气体原子行为就象台球一样,原子之间以及与器壁之间互相碰撞,其相互作用遵从经典力学定律;低温的原子运动,其相互作用则遵从量子力学定律,由德布罗意波来描述其运动,此时的德布罗意波波长λ小于原子之间的距离d,其运动由量子属性自旋量子数来决定。我们知道,自旋量子数为整数的粒子为玻色子,而自旋量子数为半整数的粒子为费米子。
玻色子具有整体特性,在低温时集聚到能量最低的同一量子态(基态);而费米子具有互相排斥的特性,它们不能占据同一量子态,因此其它的费米子就得占据能量较高的量子态,原子中的电子就是典型的费米子。
早在1924年玻色和爱因斯坦就从理论上预言存在另外的一种物质状态——玻色爱因斯坦冷凝态,即当温度足够低、原子的运动速度足够慢时,它们将集聚到能量最低的同一量子态。此时,所有的原子就象一个原子一样,具有完全相同的物理性质。
根据量子力学中的德布洛意关系,λ=h/p。粒子的运动速度越慢(温度越低),其物质波的波长就越长。当温度足够低时,原子的德布洛意波长与原子之间的距离在同一量级上,此时,物质波之间通过相互作用而达到完全相同的状态,其性质由一个原子的波函数即可描述; 当温度为绝对零度时,热运动现象就消失了,原子处于理想的玻色爱因斯坦冷凝态。
这玩意儿写起来太麻烦了,楼主还是找本热力学和统计物理的书看看吧
主要的区别就是,这三者分别是说可分辨粒子,不可分辨波色子和不可分辨费米子的
其中不可分辨性导致算后两者的微观态总数时要在最后除以N!,主要的影响在于算熵时与波尔兹曼分布有明显区别
另外就是波色子和费米子对态的占据情况是不同的,波色子可以任意占据同一态,而费米子只能一个粒子一个态,这导致总态数和最终算出来的分布情况是不同的,具体式子就不写了
现在只能想起这么多了,不好意思
欢迎分享,转载请注明来源:表白网
评论列表(0条)