通过把耗时长的函数用c语言实现,并编译成mex函数可以加快执行速度。Matlab本身是不带c语言的编译器的,所以要求你的机器上已经安装有VC,BC或Watcom
C中的一种。如果你在安装Matlab时已经设置过编译器,那么现在你应该就可以使用mex命令来编译c语言的程序了。如果当时没有选,就在Matlab里键入mex
-setup,下面只要根据提示一步步设置就可以了。需要注意的是,较低版本的在设置编译器路径时,只能使用路径名称的8字符形式。比如我用的VC装在路径C:\PROGRAM
FILES\DEVSTUDIO下,那在设置路径时就要写成:“C:\PROGRA~1”这样设置完之后,mex就可以执行了。为了测试你的路径设置正确与否,把下面的程序存为helloc。
/helloc/
#include
"mexh"
void
mexFunction(int
nlhs,
mxArray
plhs[],
int
nrhs,
const
mxArray
prhs[])
{
mexPrintf("hello,world!\n");
}
假设你把helloc放在了C:\TEST\下,在Matlab里用CD
C:\TEST\
将当前目录改为C:\
TEST\(注意,仅将C:\TEST\加入搜索路径是没有用的)。现在敲:
mex
helloc
如果一切顺利,编译应该在出现编译器提示信息后正常退出。如果你已将C:\TEST\加
入了搜索路径,现在键入hello,程序会在屏幕上打出一行:
hello,world!
看看C\TEST\目录下,你会发现多了一个文件:HELLODLL。这样,第一个mex函数就算完成了。分析helloc,可以看到程序的结构是十分简单的,整个程序由一个接口子过程
mexFunction构成。
void
mexFunction(int
nlhs,
mxArray
plhs[],
int
nrhs,
const
mxArray
prhs[])
前面提到过,Matlab的mex函数有一定的接口规范,就是指这
nlhs:输出参数数目
plhs:指向输出参数的指针
nrhs:输入参数数目
例如,使用
[a,b]=test(c,d,e)
调用mex函数test时,传给test的这四个参数分别是
2,plhs,3,prhs
其中:
prhs[0]=c
prhs[1]=d
prhs[2]=e
当函数返回时,将会把你放在plhs[0],plhs[1]里的地址赋给a和b,达到返回数据的目的。
细心的你也许已经注意到,prhs[i]和plhs[i]都是指向类型mxArray类型数据的指针。
这个类型是在mexh中定义的,事实上,在Matlab里大多数数据都是以这种类型存在。当然还有其他的数据类型,可以参考Apiguidepdf里的介绍。
为了让大家能更直观地了解参数传递的过程,我们把helloc改写一下,使它能根据输
入参数的变化给出不同的屏幕输出:
//helloc
20
#include
"mexh"
void
mexFunction(int
nlhs,
mxArray
plhs[],
int
nrhs,
const
mxArray
prhs[])
{
int
i;
i=mxGetScalar(prhs[0]);
if(i==1)
mexPrintf("hello,world!\n");
else
mexPrintf("大家好!\n");
}
将这个程序编译通过后,执行hello(1),屏幕上会打出:
hello,world!
而hello(0)将会得到:
大家好!
现在,程序hello已经可以根据输入参数来给出相应的屏幕输出。在这个程序里,除了用到了屏幕输出函数mexPrintf(用法跟c里的printf函数几乎完全一样)外,还用到了一个函数:mxGetScalar,调用方式如下:
i=mxGetScalar(prhs[0]);
"Scalar"就是标量的意思。在Matlab里数据都是以数组的形式存在的,mxGetScalar的作用就是把通过prhs[0]传递进来的mxArray类型的指针指向的数据(标量)赋给C程序里的变量。这个变量本来应该是double类型的,通过强制类型转换赋给了整形变量i。既然有标量,显然还应该有矢量,否则矩阵就没法传了。看下面的程序:
//helloc
21
#include
"mexh"
void
mexFunction(int
nlhs,
mxArray
plhs[],
int
nrhs,
const
mxArray
prhs[])
{
int
i;
i=mxGetPr(prhs[0]);
if(i[0]==1)
mexPrintf("hello,world!\n");
else
mexPrintf("大家好!\n");
}
这样,就通过mxGetPr函数从指向mxArray类型数据的prhs[0]获得了指向double类型的指针。
但是,还有个问题,如果输入的不是单个的数据,而是向量或矩阵,那该怎么处理呢
?通过mxGetPr只能得到指向这个矩阵的指针,如果我们不知道这个矩阵的确切大小,就
没法对它进行计算。
为了解决这个问题,Matlab提供了两个函数mxGetM和mxGetN来获得传进来参数的行数
和列数。下面例程的功能很简单,就是获得输入的矩阵,把它在屏幕上显示出来:
//showc
10
#include
"mexh"
#include
"mexh"
void
mexFunction(int
nlhs,
mxArray
plhs[],
int
nrhs,
const
mxArray
prhs[])
{
double
data;
int
M,N;
int
i,j;
data=mxGetPr(prhs[0]);
//获得指向矩阵的指针
M=mxGetM(prhs[0]);
//获得矩阵的行数
N=mxGetN(prhs[0]);
//获得矩阵的列数
for(i=0;i<M;i++)
{
for(j=0;j<N;j++)
mexPrintf("%43f
",data[jM+i]);
mexPrintf("\n");
}
}
编译完成后,用下面的命令测试一下:
a=1:10;
b=[a;a+1];
show(a)
show(b)
需要注意的是,在Matlab里,矩阵第一行是从1开始的,而在C语言中,第一行的序数为零,Matlab里的矩阵元素b(i,j)在传递到C中的一维数组大data后对应于data[jM+i]
。
输入数据是在函数调用之前已经在Matlab里申请了内存的,由于mex函数与Matlab共用同一个地址空间,因而在prhs[]里传递指针就可以达到参数传递的目的。但是,输出参数却需要在mex函数内申请到内存空间,才能将指针放在plhs[]中传递出去。由于返回指针类型必须是mxArray,所以Matlab专门提供了一个函数:mxCreateDoubleMatrix来实现内存的申请,函数原型如下:
mxArray
mxCreateDoubleMatrix(int
m,
int
n,
mxComplexity
ComplexFlag)
m:待申请矩阵的行数
n:待申请矩阵的列数
为矩阵申请内存后,得到的是mxArray类型的指针,就可以放在plhs[]里传递回去了。但是对这个新矩阵的处理,却要在函数内完成,这时就需要用到前面介绍的mxGetPr。使用
mxGetPr获得指向这个矩阵中数据区的指针(double类型)后,就可以对这个矩阵进行各种操作和运算了。下面的程序是在上面的showc的基础上稍作改变得到的,功能是将输
//reversec
10
#include
"mexh"
void
mexFunction(int
nlhs,
mxArray
plhs[],
int
nrhs,
const
mxArray
prhs[])
{
double
inData;
double
outData;
int
M,N;
int
i,j;
inData=mxGetPr(prhs[0]);
M=mxGetM(prhs[0]);
N=mxGetN(prhs[0]);
plhs[0]=mxCreateDoubleMatrix(M,N,mxREAL);
outData=mxGetPr(plhs[0]);
for(i=0;i<M;i++)
for(j=0;j<N;j++)
outData[jM+i]=inData[(N-1-j)M+i];
}
当然,Matlab里使用到的并不是只有double类型这一种矩阵,还有字符串类型、稀疏矩阵、结构类型矩阵等等,并提供了相应的处理函数。本文用到编制mex程序中最经常遇到的一些函数,其余的详细情况清参考Apirefpdf。
通过前面两部分的介绍,大家对参数的输入和输出方法应该有了基本的了解。具备了这些知识,就能够满足一般的编程需要了。但这些程序还有些小的缺陷,以前面介绍的re由于前面的例程中没有对输入、输出参数的数目及类型进行检查,导致程序的容错性很差,以下程序则容错性较好
#include
"mexh"
void
mexFunction(int
nlhs,
mxArray
plhs[],
int
nrhs,
const
mxArray
prhs[])
{
double
inData;
double
outData;
int
M,N;
//异常处理
//异常处理
if(nrhs!=1)
mexErrMsgTxt("USAGE:
b=reverse(a)\n");
if(!mxIsDouble(prhs[0]))
mexErrMsgTxt("the
Input
Matrix
must
be
double!\n");
inData=mxGetPr(prhs[0]);
M=mxGetM(prhs[0]);
N=mxGetN(prhs[0]);
plhs[0]=mxCreateDoubleMatrix(M,N,mxREAL);
outData=mxGetPr(plhs[0]);
for(i=0;i<M;i++)
for(j=0;j<N;j++)
outData[jM+i]=inData[(N-1-j)M+i];
}
在上面的异常处理中,使用了两个新的函数:mexErrMsgTxt和mxIsDouble。MexErrMsgTxt在给出出错提示的同时退出当前程序的运行。MxIsDouble则用于判断mxArray中的数据是否double类型。当然Matlab还提供了许多用于判断其他数据类型的函数,这里不加详述。
需要说明的是,Matlab提供的API中,函数前缀有mex-和mx-两种。带mx-前缀的大多是对mxArray数据进行操作的函数,如mxIsDouble,mxCreateDoubleMatrix等等。而带mx前缀的则大多是与Matlab环境进行交互的函数,如mexPrintf,mxErrMsgTxt等等。了解了这一点,对在Apirefpdf中查找所需的函数很有帮助。
至此为止,使用C编写mex函数的基本过程已经介绍完了。
错误信息。在matlab程序运行时出错会使matlab程序内出现错误信息,matlab程序检测错误信息会导致弹出gui界面提示程序出现错误信息。MATLAB是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境。
MATLAB是美国MathWorks公司出品的商业数学软件,用于数据分析、无线通信、深度学习、图像处理与计算机视觉、信号处理、量化金融与风险管理、机器人,控制系统等领域。
MATLAB是matrix&laboratory两个词的组合,意为矩阵工厂(矩阵实验室),软件主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。
它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言(如C、Fortran)的编辑模式。
扩展资料:
matlab功能:
1、专业开发:
MATLAB 工具箱经过专业开发、严格测试并拥有完善的帮助文档。
2、包含交互式应用程序:
MATLAB 应用程序让您看到不同的算法如何处理您的数据。在您获得所需结果之前反复迭代,然后自动生成 MATLAB 程序,以便对您的工作进行重现或自动处理。
3、以及扩展能力:
只需更改少量代码就能扩展您的分析在群集、GPU 和云上运行。无需重写代码或学习大数据编程和内存溢出技术。
-MATLAB
官网-matlab
Simulink的命令行仿真方式:
[t,x,y]=sim('modelname')
利用对话框参数进行仿真,返回输出矩阵;
[t,x,y]=sim('modelname', timespan, options, ut)
利用输入参数进行仿真,返回输出矩阵;
[t,x,y1,y2,yn]=sim('modelname', timespan, options, ut)
利用输入参数进行仿真,返回逐个输出;
参数说明:
'modelname' 运行的模型名(不包含扩展名),必须在Matlab的搜索路径上。
timespan 指定仿真的时间区间,可以采取以下几种格式:
(1)[] 空,利用模型对话框设置时间;
(2)T_final 标量,制定终止仿真时间;
(3)[T_start T_final] 二元向量,指定仿真时间区间;
(4)outputTimes 任何指定输出时间记录点的向量。
options MATLAB特定的一种数据结构,具有最高优先权,可以覆盖模型参数对话框中的设置。
ut 赋给仿真对象数入口模块的量,具有最高优先设置,它是形为[t,u1,u2]的数值矩阵,每个为时间序列或输入序列。
matlab 程序的文件代码是以m文件的形式呈现的。将matlab代码编写进m文件内然后运行即可。
例子:
建立一个 helloworldm
文件内包括内容如下:
fprintf('Hello World!');
使用快捷键F5直接运行,然后可以在控制台下看到打印的:
Hello World!
常微分(ODE)方程的数值求解器有:非刚性求解器(计算的精度从低到高)ode23,ode45,ode113,刚性方程求解器(适用的刚性从弱到强) ode15s,ode23s,ode23t,ode23tb,隐方程求解器ode15i
所谓刚性方程,就是指它的解的曲线有剧烈的或缓慢的变化。如van der Pol方程(教材p144例4)就是一个刚性方程
Ode求解器默认的相对误差是1e-3,绝对误差是1e-6,要改变默认的精度设置,可以用odeset来设定Options。具体设置方法,求助于help功能。Ode求解器中可以求解带有参数的微分方程。
常用的精度设置如
Options=odeset(‘RelTol’, 1e-5,’AbsTol’, [1e-8, 1e-7]);
其中绝对误差可以对每个未知函数的分量分别规定,写成一个向量,维数等于方程的维数。如对各分量的绝对误差设置相同则只须写一个标量误差。
每一积分步第i个分量的误差满足e(i) <= max(RelTolabs(y(i)),AbsTol(i))
如果只要对解的范数作误差控制,而不需对解的每个分量作误差控制,则在Options中可以加上选项’NormControl’, ‘on’ 这时每一积分步误差的范数满足norm(e) <= max(RelTolnorm(y),AbsTol) 这个选项对那些解的范数会等于零的方程特别有用,不用此选项时,为了要达到苛刻的误差要求,步长会取得很小,将大大减慢求解过程以致求解失败
时滞是常数的时滞常微分方程DDE的数值求解器有dde23,要改变默认的设置,可以用ddeset来设定。
常微分方程求解器的options还可以设置一个有用的功能,语法是
Options=odeset( 'Events',@EVENTS);(Options可以是自定义名,其中各种设置如精度设置可以写在一起,用逗号分开),用ode45求解时,可用格式
[TOUT,YOUT,TE,YE,IE] = ode45(@ODEFUN,TSPAN,Y0,Options, P)
在odeset中设置了一个事件函数@EVENTS,是自编m函数,函数名自定。函数的格式是
[VALUE,ISTERMINAL,DIRECTION] = EVENTS(T,Y,P)
事件函数的输入是和微分方程的函数输入相同,顺序相同 事件函数的输出是3个列向量 例如 [VALUE,ISTERMINAL,DIRECTION],名称自定,列向量的维数是事件的个数,VALUE(I) 是事件函数的第I个分量表达式的值, ISTERMINAL(I)=1表示事件函数的第I个分量的值等于零时积分终止,不然等于0 , DIRECTION(I)=0 表示要计算事件函数的第I个分量的所有的零点 (默认), +1 仅计算事件函数第I个分量在零点递增的零点 -1仅计算事件函数的第I个分量在零点递减的零点
TSPAN是微分方程求解区间,例如可用 [0 pi]表示,也可以指定TOUT为求解区间中的一些点列,如TSPAN=0: 01: 32; Y0是微分方程初值问题中的初值,如Y0=[0 0];
TOUT是微分方程求解区间TSPAN中的时间点列,YOUT是时间点列TOUT上方程解的值,是矩阵形式,列数等于方程的维数,TOUT(:,J)是解的第J个分量在时间点列TOUT上的向量值。 TE是列向量,是事件发生的时刻序列 YE的各行向量是事件发生各时刻方程的解的向量值, IE表示在TE时刻发生的事件在事件函数中的序号
欢迎分享,转载请注明来源:表白网
评论列表(0条)