太阳的资料

太阳的资料,第1张

宇宙间的天体在不断运动,并形成各级天体系统。如月球围绕地球转动,构成地月系,地球是地月系的中心天体。地球与太阳系的其他行星等天体都围绕太阳公转,太阳是太阳系的中心天体。太阳系是银河系中极小的一部分,在银河系中,像太阳这样的恒星有2000亿多颗。

在银河系以外,现在观察到类似银河系的天体系统约有10亿个,我们把它们称为河外星系。银河系和河外星系共同组成总星系。总星系是目前人们所能观察到的宇宙部分。

为了便于认识星空,人们把宇宙假想为一个半径无限大的球体,称为天球。

为了便于认识恒星,人们把天球分成若干区域,这些区域称为星座。如北斗七星就是大熊座的主要部分。按国际上规定,全球分为88个星座。每个恒星都归属一定的星座,如北极星就是小熊座中的一颗恒星。

所以说太阳系和星座完全是两个不同的概念,不能混为一谈。

补充:

12星座与 88星座的由来

88星座:古代为了要方便在航海时辨别方位与观测天象,於是将散布在天上的星星运用想像力把它们连结起来,有一半是在古时候就已命名了,其命名的方式有依照古文明的神话与形状的附会(包含了美索不达米亚、巴比伦、埃及、希腊的神话与史诗)。另一半(大部是在南半球的夜空中)是近代才命名,经常用航海的仪器来命名。在古代因地域的不同,所以"连连看"的方式也就不一样!而现在世界已统一星座图为将天空划分八十八区域八十八个星座。

12星座:我们一般谈论的『星座』(SIGN),指的是『太阳星座』(SUNSIGN);亦即以地球上的人为中心,同时间看到太阳运行到轨道(希腊文ZODIAC:意即~动物绕成的圈圈,又称"黄道")上哪一个星座的位置,就说那个人是什么星座。 二千多年前希腊的天文学家希巴克斯(Hipparchus,西元前190~120)为标示太阳在黄道上观行的位置,就将黄道带分成十二个区段,以春分点为0°,自春分点(即黄道零度)算起,每隔30° 为一宫,并以当时各宫内所包含的主要星座来命名,依次为白羊、金牛、双子、巨蟹、狮子、室女、天秤、天蝎、人马、摩羯、宝瓶、双鱼等宫,称之为黄道十二宫 。总计为十二个星群。在地球运转到每个等份(星群)时所出生的婴儿,长大后总有若干相似的特徵,包括行为特质等。将这些联想(丰富的想像和创造力)串联起来,便使这些星群人性的具像化了;又加入神话的色彩,成为文化(主要指希腊和罗马神话)的重要部份。这套命理演进、流传至今至少五千年的历史,它们以这十二个星座为代表。但这些星座并非是某一个"星星"的意思,只能视为『名称相同的一种代表标记而已』。

关于12星座的一点资料:

1太阳(Sun)

●象徵著精神的圆,圆中有一小点,意味著混沌中生命的萌芽。

●太阳守护狮子座;在个人出生图上的意义是自我表现。为一切行星光之来源,故影响性格。由太阳来看狮子座,可以发现其爱现和发光体的特质;另外,太阳常常被比喻为帝王,这和狮子座的爱面子和王者之风也有关系。

(这是否说明太阳在12星座中属于狮子座?——美国警察)

关于88星座的一点资料:

仙女座

在讲秋季四边形时,已经提到过仙女座了(参见“飞马座”的星座介绍)。构成这个四边形的α星是仙女座中最亮的一颗,从四边形中飞马座α星到仙女座α星的对角线,向东北方向延伸,仙女座δ、β、γ这三颗亮星(除δ是3m外,其它两颗都是2m星)几乎就在这条延长线。再往前延伸,就碰到英仙座的大陵五了。大陵五与英仙座α星还有仙女座γ星刚好构成了一个直角三角形。

这颗仙女座γ星是个双星,其中主星是颗23m的橙色星,伴星为51m的**星。有趣的是,这颗伴星是个“变色龙”,从**、金色到橙色、蓝色,简直像个高明的魔术师一样变来变去。

仙女座中最著名的天体,大概要算是那个大星云了。在仙女座υ星附近,晴朗无月的夜晚,我们可以看到一小块青白色的云雾,这就是仙女座大星云。这个星云早在1612年就被天文学家发现了,但直到本世纪20年代,美国天文学家哈勃才彻底搞清,它和人马座中的那些星云完全是两码事, 它是远在220万光年外的一个大星系,所以它的正确名称应该是“仙女座河外星系”。

仙女座河外星系的直径为17万光年,包含3000多亿颗恒星。它和我们银河系很相似,也是漩涡状的,也有很多变星、星团、星云等。有趣的是,在它身旁还有两个小星系,它们一起构成了一个三重星系。(一点都没涉及太阳——美国警察)

狮子座

介绍春夜星空的牧夫座、室女座时,曾经提到过狮子座。狮子座的β星、牧夫座的大角以及室女座的角宿一,组成了春夜里很重要的“春季大三角”。

狮子座也是黄道星座。由于岁差的缘故,在四千多年前的每年六月,太阳的视运动正好经过狮子座。(现在的六月,太阳的视运动已经到了金牛座与双子座之间。)那时,波斯湾古国迦勒底的人民认为,太阳是从狮子座中获得了很多热量,所以天气才变得热起来。古埃及人也有同感,因为每年的这个时候,许多狮子都迁移到尼罗河河谷中去避暑。

古埃及对狮子座非常崇拜,据说,著名的狮身人面像就是由这头狮子的身体配上室女的头塑造出来的。狮子座里的星在我国古代也很受重视,我国古人把它们喻为黄帝之神,称为轩辕。

我们在春夜通过春季大三角找到了狮子座β星后,它东边的一大片星,就都是狮子座的了。在狮子座中,δ、θ、β三颗星构成一个很显著的三角形,这是狮子的后身和尾巴;从ε到α这六颗星组成了一个镰刀的形状,又象个反写的问号,这是狮子的头,连接大熊座的指极星(即勺口的两颗星)向与北极星相反的方向延伸,就可以找到它。α星我国叫轩辕十四,它的视星等为135m,是狮子座最亮的星,也是全天第二十一亮星。 它和大角、角宿一组成了一个等腰三角形,延长大熊座δ和γ星到十倍远的地方可以找到它。古代,航海者经常用它来确定航船在大海中的位置,所以狮子座α星又被授予“航海九星之一”的称号。

狮子座的轩辕十四就位于黄道附近,它和同样处在黄道附近的金牛座毕宿五、天蝎座的心宿二和南鱼座的北落师门一共四颗亮星,在天球上各相差大约90°,正好每个季节一颗,它们被合称为黄道带的“四大天王”。

每年11月中旬,尤其是14、15两日的夜晚,在狮子座反写问号的ζ星附近,会有大量的流星出现,这就是著名的狮子座流星雨。它大约每33年出现一次极盛, 早在公元931年,我国五代时期就已记录了它极盛时的情景。到了1833年的最盛期,流星就像焰火一样在ζ星附近爆发,每小时有上万颗。以致第二天晚上有位农夫赶紧跑到屋外,看看天上的星是不是都掉光了。(能说明太阳属于狮子座吗?——美国警察)

总结:太阳在12星座和88星座中是不是都属于狮子座呢?我对星座的了解不深,你到下面的网址中再去看看吧,或者请教一下专家。

参考资料:

http://wwwastronomycomcn/bbs/archive/o_t/t_36182/start_0/ http://wwwhongencom/art/twdg/index4htm

太阳能电池

引言 太阳能是人类取之不尽用之不竭的可再生能源.也是清洁能源,不产生任何的环境污染。在太阳能的有效利用当中;大阳能光电利用是近些年来发展最快,最具活力的研究领域, 是其中最受瞩目的项目之一。为此,人们研制和开发了太阳能电池。制作太阳能电池主要是以半导体材料为基础,其工作原理是利用光电材料吸收光能后发生光电于转换反应,根据所用材料的不同,太阳能电池可分为:1、硅太阳能电池;2、以无机盐如砷化镓III-V化合物、硫化镉、铜铟硒等多元化合物为材料的电池;3、功能高分子材料制备的大阳能电池;4、纳米晶太阳能电池等。不论以何种材料来制作电池,对太阳能电池材料一般的要求有:1、半导体材料的禁带不能太宽;②要有较高的光电转换效率:3、材料本身对环境不造成污染;4、材料便于工业化生产且材料性能稳定。基于以上几个方面考虑,硅是最理想的太阳能电池材料,这也是太阳能电池以硅材料为主的主要原因。但随着新材料的不断开发和相关技术的发展,以其它村料为基础的太阳能电池也愈来愈显示出诱人的前景。本文简要地综述了太阳能电池的种类及其研究现状,并讨论了太阳能电池的发展及趋势。 1 硅系太阳能电池 11 单晶硅太阳能电池 硅系列太阳能电池中,单晶硅大阳能电池转换效率最高,技术也最为成熟。高性能单晶硅电池是建立在高质量单晶硅材料和相关的成热的加工处理工艺基础上的。现在单晶硅的电地工艺己近成熟,在电池制作中,一般都采用表面织构化、发射区钝化、分区掺杂等技术,开发的电池主要有平面单晶硅电池和刻槽埋栅电极单晶硅电池。提高转化效率主要是靠单晶硅表面微结构处理和分区掺杂工艺。在此方面,德国夫朗霍费费莱堡太阳能系统研究所保持着世界领先水平。该研究所采用光刻照相技术将电池表面织构化,制成倒金字塔结构。并在表面把一13nm。厚的氧化物钝化层与两层减反射涂层相结合.通过改进了的电镀过程增加栅极的宽度和高度的比率:通过以上制得的电池转化效率超过23%,是大值可达23.3%。Kyocera公司制备的大面积(225cm2)单电晶太阳能电池转换效率为19.44%,国内北京太阳能研究所也积极进行高效晶体硅太阳能电池的研究和开发,研制的平面高效单晶硅电池(2cm X 2cm)转换效率达到1979%,刻槽埋栅电极晶体硅电池(5cm X 5cm)转换效率达86%。 单晶硅太阳能电池转换效率无疑是最高的,在大规模应用和工业生产中仍占据主导地位,但由于受单晶硅材料价格及相应的繁琐的电池工艺影响,致使单晶硅成本价格居高不下,要想大幅度降低其成本是非常困难的。为了节省高质量材料,寻找单晶硅电池的替代产品,现在发展了薄膜太阳能电池,其中多晶硅薄膜太阳能电池和非晶硅薄膜太阳能电池就是典型代表。 1.2 多晶硅薄膜太阳能电池 通常的晶体硅太阳能电池是在厚度350~450μm的高质量硅片上制成的,这种硅片从提拉或浇铸的硅锭上锯割而成。因此实际消耗的硅材料更多。为了节省材料,人们从70年代中期就开始在廉价衬底上沉积多晶硅薄膜,但由于生长的硅膜晶粒大小,未能制成有价值的太阳能电池。为了获得大尺寸晶粒的薄膜,人们一直没有停止过研究,并提出了很多方法。目前制备多晶硅薄膜电池多采用化学气相沉积法,包括低压化学气相沉积(LPCVD)和等离子增强化学气相沉积(PECVD)工艺。此外,液相外延法(LPPE)和溅射沉积法也可用来制备多晶硅薄膜电池。 化学气相沉积主要是以SiH2Cl2、SiHCl3、Sicl4或SiH4,为反应气体,在一定的保护气氛下反应生成硅原子并沉积在加热的衬底上,衬底材料一般选用Si、SiO2、Si3N4等。但研究发现,在非硅衬底上很难形成较大的晶粒,并且容易在晶粒间形成空隙。解决这一问题办法是先用 LPCVD在衬底上沉炽一层较薄的非晶硅层,再将这层非晶硅层退火,得到较大的晶粒,然后再在这层籽晶上沉积厚的多晶硅薄膜,因此,再结晶技术无疑是很重要的一个环节,目前采用的技术主要有固相结晶法和中区熔再结晶法。多晶硅薄膜电池除采用了再结晶工艺外,另外采用了几乎所有制备单晶硅太阳能电池的技术,这样制得的太阳能电池转换效率明显提高。德国费莱堡太阳能研究所采用区馆再结晶技术在FZ Si衬底上制得的多晶硅电池转换效率为19%,日本三菱公司用该法制备电池,效率达1642%。 液相外延(LPE)法的原理是通过将硅熔融在母体里,降低温度析出硅膜。美国Astropower公司采用LPE制备的电池效率达12.2%。中国光电发展技术中心的陈哲良采用液相外延法在冶金级硅片上生长出硅晶粒,并设计了一种类似于晶体硅薄膜太阳能电池的新型太阳能电池,称之为“硅粒”太阳能电池,但有关性能方面的报道还未见到。 多晶硅薄膜电池由于所使用的硅远较单晶硅少,又无效率衰退问题,并且有可能在廉价衬底材料上制备,其成本远低于单晶硅电池,而效率高于非晶硅薄膜电池,因此,多晶硅薄膜电池不久将会在太阳能电地市场上占据主导地位。 13 非晶硅薄膜太阳能电池 开发太阳能电池的两个关键问题就是:提高转换效率和 降低成本。由于非晶硅薄膜太阳能电池的成本低,便于大规模生产,普遍受到人们的重视并得到迅速发展,其实早在70年代初,Carlson等就已经开始了对非晶硅电池的研制工作,近几年它的研制工作得到了迅速发展,目前世界上己有许多家公司在生产该种电池产品。 非晶硅作为太阳能材料尽管是一种很好的电池材料,但由于其光学带隙为17eV, 使得材料本身对太阳辐射光谱的长波区域不敏感,这样一来就限制了非晶硅太阳能电池的转换效率。此外,其光电效率会随着光照时间的延续而衰减,即所谓的光致衰退S一W效应,使得电池性能不稳定。解决这些问题的这径就是制备叠层太阳能电池,叠层太阳能电池是由在制备的p、i、n层单结太阳能电池上再沉积一个或多个P-i-n子电池制得的。叠层太阳能电池提高转换效率、解决单结电池不稳定性的关键问题在于:①它把不同禁带宽度的材科组台在一起,提高了光谱的响应范围;②顶电池的i层较薄,光照产生的电场强度变化不大,保证i层中的光生载流子抽出;③底电池产生的载流子约为单电池的一半,光致衰退效应减小;④叠层太阳能电池各子电池是串联在一起的。 非晶硅薄膜太阳能电池的制备方法有很多,其中包括反应溅射法、PECVD法、LPCVD法等,反应原料气体为H2稀释的SiH4,衬底主要为玻璃及不锈钢片,制成的非晶硅薄膜经过不同的电池工艺过程可分别制得单结电池和叠层太阳能电池。目前非晶硅太阳能电池的研究取得两大进展:第一、三叠层结构非晶硅太阳能电池转换效率达到13%,创下新的记录;第二三叠层太阳能电池年生产能力达5MW。美国联合太阳能公司(VSSC)制得的单结太阳能电池最高转换效率为9.3%,三带隙三叠层电池最高转换效率为13%,见表1 上述最高转换效率是在小面积(0.25cm2)电池上取得的。曾有文献报道单结非晶硅太阳能电池转换效率超过12.5%,日本中央研究院采用一系列新措施,制得的非晶硅电池的转换效率为13.2%。国内关于非晶硅薄膜电池特别是叠层太阳能电池的研究并不多,南开大学的耿新华等采用工业用材料,以铝背电极制备出面积为20X20cm2、转换效率为8.28%的a-Si/a-Si叠层太阳能电池。 非晶硅太阳能电池由于具有较高的转换效率和较低的成本及重量轻等特点,有着极大的潜力。但同时由于它的稳定性不高,直接影响了它的实际应用。如果能进一步解决稳定性问题及提高转换率问题,那么,非晶硅大阳能电池无疑是太阳能电池的主要发展产品之一。 2 多元化合物薄膜太阳能电池 为了寻找单晶硅电池的替代品,人们除开发了多晶硅、非晶硅薄膜太阳能电池外,又不断研制其它材料的太阳能电池。其中主要包括砷化镓III-V族化合物、硫化镉、硫化镉及铜锢硒薄膜电池等。上述电池中,尽管硫化镉、碲化镉多晶薄膜电池的效率较非晶硅薄膜太阳能电池效率高,成本较单晶硅电池低,并且也易于大规模生产,但由于镉有剧毒,会对环境造成严重的污染,因此,并不是晶体硅太阳能电池最理想的替代 砷化镓III-V化合物及铜铟硒薄膜电池由于具有较高的转换效率受到人们的普遍重视。GaAs属于III-V族化合物半导体材料,其能隙为1.4eV,正好为高吸收率太阳光的值,因此,是很理想的电池材料。GaAs等III-V化合物薄膜电池的制备主要采用 MOVPE和LPE技术,其中MOVPE方法制备GaAs薄膜电池受衬底位错、反应压力、III-V比率、总流量等诸多参数的影响。 除GaAs外,其它III-V化合物如Gasb、GaInP等电池材料也得到了开发。1998年德国费莱堡太阳能系统研究所制得的GaAs太阳能电池转换效率为24.2%,为欧洲记录。首次制备的GaInP电池转换效率为14.7%.见表2。另外,该研究所还采用堆叠结构制备GaAs,Gasb电池,该电池是将两个独立的电池堆叠在一起,GaAs作为上电池,下电池用的是Gasb,所得到的电池效率达到31.1%。 铜铟硒CuInSe2简称CIC。CIS材料的能降为1.leV,适于太阳光的光电转换,另外,CIS薄膜太阳电池不存在光致衰退问题。因此,CIS用作高转换效率薄膜太阳能电池材料也引起了人们的注目。 CIS电池薄膜的制备主要有真空蒸镀法和硒化法。真空蒸镀法是采用各自的蒸发源蒸镀铜、铟和硒,硒化法是使用H2Se叠层膜硒化,但该法难以得到组成均匀的CIS。CIS薄膜电池从80年代最初8%的转换效率发展到目前的15%左右。日本松下电气工业公司开发的掺镓的CIS电池,其光电转换效率为15.3%(面积1cm2)。1995年美国可再生能源研究室研制出转换效率为17.l%的CIS太阳能电池,这是迄今为止世界上该电池的最高转换效率。预计到2000年CIS电池的转换效率将达到20%,相当于多晶硅太阳能电池。 CIS作为太阳能电池的半导体材料,具有价格低廉、性能良好和工艺简单等优点,将成为今后发展太阳能电池的一个重要方向。唯一的问题是材料的来源,由于铟和硒都是比较稀有的元素,因此,这类电池的发展又必然受到限制。 3 聚合物多层修饰电极型太阳能电池 在太阳能电池中以聚合物代替无机材料是刚刚开始的一个太阳能电池制爸的研究方向。其原理是利用不同氧化还原型聚合物的不同氧化还原电势,在导电材料(电极)表面进行多层复合,制成类似无机P-N结的单向导电装置。其中一个电极的内层由还原电位较低的聚合物修饰,外层聚合物的还原电位较高,电子转移方向只能由内层向外层转移;另一个电极的修饰正好相反,并且第一个电极上两种聚合物的还原电位均高于后者的两种聚合物的还原电位。当两个修饰电极放入含有光敏化剂的电解波中时.光敏化剂吸光后产生的电子转移到还原电位较低的电极上,还原电位较低电极上积累的电子不能向外层聚合物转移,只能通过外电路通过还原电位较高的电极回到电解液,因此外电路中有光电流产生。 由于有机材料柔性好,制作容易,材料来源广泛,成本底等优势,从而对大规模利用太阳能,提供廉价电能具有重要意义。但以有机材料制备太阳能电池的研究仅仅刚开始,不论是使用寿命,还是电池效率都不能和无机材料特别是硅电池相比。能否发展成为具有实用意义的产品,还有待于进一步研究探索。 4 纳米晶化学太阳能电池 在太阳能电池中硅系太阳能电池无疑是发展最成熟的,但由于成本居高不下,远不能满足大规模推广应用的要求。为此,人们一直不断在工艺、新材料、电池薄膜化等方面进行探索,而这当中新近发展的纳米TiO2晶体化学能太阳能电池受到国内外科学家的重视。 自瑞士Gratzel教授研制成功纳米TiO2化学大阳能电池以来,国内一些单位也正在进行这方面的研究。纳米晶化学太阳能电池(简称NPC电池)是由一种在禁带半导体材料修饰、组装到另一种大能隙半导体材料上形成的,窄禁带半导体材料采用过渡金属Ru以及Os等的有机化合物敏化染料,大能隙半导体材料为纳米多晶TiO2并制成电极,此外NPC电池还选用适当的氧化一还原电解质。纳米晶TiO2工作原理:染料分子吸收太阳光能跃迁到激发态,激发态不稳定,电子快速注入到紧邻的TiO2导带,染料中失去的电子则很快从电解质中得到补偿,进入TiO2导带中的电于最终进入导电膜,然后通过外回路产生光电流。 纳米晶TiO2太阳能电池的优点在于它廉价的成本和简单的工艺及稳定的性能。其光电效率稳定在10%以上,制作成本仅为硅太阳电池的1/5~1/10.寿命能达到2O年以上。但由于此类电池的研究和开发刚刚起步,估计不久的将来会逐步走上市场。 5 太阳能电池的发展趋势 从以上几个方面的讨论可知,作为太阳能电池的材料,III-V族化合物及CIS等系由稀有元素所制备,尽管以它们制成的太阳能电池转换效率很高,但从材料来源看,这类太阳能电池将来不可能占据主导地位。而另两类电池纳米晶太阳能电池和聚合物修饰电极太阳能电地存在的问题,它们的研究刚刚起步,技术不是很成熟,转换效率还比较低,这两类电池还处于探索阶段,短时间内不可能替代应系太阳能电池。因此,从转换效率和材料的来源角度讲,今后发展的重点仍是硅太阳能电池特别是多晶硅和非晶硅薄膜电池。由于多晶硅和非晶硅薄膜电池具有较高的转换效率和相对较低的成本,将最终取代单晶硅电池,成为市场的主导产品。 提高转换效率和降低成本是太阳能电池制备中考虑的两个主要因素,对于目前的硅系太阳能电池,要想再进一步提高转换效率是比较困难的。因此,今后研究的重点除继续开发新的电池材料外应集中在如何降低成本上来,现有的高转换效率的太阳能电池是在高质量的硅片上制成的,这是制造硅太阳能电池最费钱的部分。因此,在如何保证转换效率仍较高的情况下来降低衬底的成本就显得尤为重要。也是今后太阳能电池发展急需解决的问题。近来国外曾采用某些技术制得硅条带作为多晶硅薄膜太阳能电池的基片,以达到降低成本的目的,效果还是比较现想的。

太阳的黑子活动

太阳黑子对地球的影响

太阳是地球上光和热的源泉,它的一举一动,都会对地球产生各种各样的影响。黑子既然是太阳上物质的一种激烈的活动现象,所以对地球的影响很明显。

当太阳上有大群黑子出现的时候,地球上的指南针会乱抖动,不能正确地指示方向;平时很善于识别方向的信鸽会迷路;无线电通讯也会受到严重阻碍,甚至会突然中断一段时间,这些反常现象将会对飞机、轮船和人造卫星的安全航行、还有电视传真等等方面造成很大的威胁。

黑子还会引起地球上气候的变化。 100多年以前,一位瑞士的天文学家就发现,黑子多的时候地球上气候干燥,农业丰收;黑子少的时候气候潮湿,暴雨成灾。我国的著名科学家竺可桢也研究出来,凡是中国古代书上对黑子记载得多的世纪,也是中国范围内特别寒冷的冬天出现得多的世纪。还有人统计了一些地区降雨量的变化情况,发现这种变化也是每过 11年重复一遍,很可能也跟黑子数目的增减有关系。

研究地震的科学工作者发现,太阳黑子数目增多的时候,地球上的地震也多。地震次数的多少,也有大约11年左右的周期性。

植物学家也发现,树木的生长情况也随太阳活动的11年周期而变化。黑子多的年份树木生长得快;黑子少的年份就生长得慢。

更有趣的是,黑子数目的变化甚至还会影响到我们的身体,人体血液中白血球数目的变化也有11年的周期性。

http://baikebaiducom/view/953htm

你可以看看

用一块黑色玻璃对着太阳看,可以看到光辉璀璨的太阳表面有时会出现一些黑色的斑点,这就是太阳黑子。在风沙蔽日、阳关减弱的日子里,我们用肉眼就能看见太阳黑子。

在太阳的表面上,黑子有时确实只是个小小的黑点。可别小看这个小黑点,它的直径至少也有成百上千千米呢!那么,究竟什么是太阳黑子?简单来说,太阳黑子其实是太阳表面上刮起来的风暴,是一个个巨大的、成旋涡状的炽热气流。黑子并不黑。它的温度在4500°C左右,比沸腾的钢水还要热得多。但它比周围6000°C的高温低了大约1500°C。所以在明亮背景的衬托下,温度低的黑子就显得很黑了。

太阳黑子是怎样形成的呢?我们知道,太阳表面温度为6000°C,中心温度高达15000000°C以上。太阳表面密度很小,只有水的100亿份之一。而它的中心密度却很大,为水的110倍。这种内外巨大的温度和密度差异,引起了太阳物质的大规模运动。黑子就是太阳物质运动的一种表现。经过长期观测发现,太阳上的黑子数目,有些年份较多,有些年份较少。黑子数目的变化具有周期性,大约每隔11年出现一次高峰。太阳黑子出现的多少,反映了太阳物质活动的强弱。

太阳物质活动的变化,会对地球环境和地球上的生物产生不可避免的影响。太阳黑子的大爆发会干扰地球磁场,给航天、通信、导航定位、电网以及现代军事活动带来严重危害和巨大损失。,黑子大爆发还会使大气层上方出现的臭氧量激增。增加的臭氧要吸收比正常量更多的太阳热量,使气温、气压和大气环流发生变化,形成恶劣的天气。有科学家说,太阳黑子的“顽皮行为”很可能是导致“厄尔尼诺”等全球性气候反常现象的原因。

1 求高人帮我归纳一下古文中的天文地理常识

”参宿是益州(今四川)的分野,井宿是雍州(今陕西、甘肃大部)的分野,蜀道跨益、雍二州。”形容雄兵出师惊天动地的场面,参星即参宿。

四象参见“二十八宿”条。星分翼轸,地接衡庐。

分野古代占星家为了用天象变化来占卜人间的吉凶祸福,将天上星空区域与地上的国州互相对应,称作分野。”是说江西南昌地处翼宿、轸宿分野之内。

王勃《滕王阁序》:“物华天宝,龙光射斗牛之墟。

古人把东、北、西、南四方每一方的七宿想象为四种动物形象,叫作四象。 星宿,分野,扪参历井。二十八宿的名称,自西向东排列为:

东方苍龙七宿(角、亢kang、氐di、房、心、尾、箕)

北方玄武七宿(斗、牛、女、虚、危、室、壁)

西方白虎七宿(奎、娄、胃、昴mao、毕、觜zT、参shen)

南方朱雀七宿(井、鬼、柳、星、张、翼、轸zhen)。

每宿包含若干颗恒星。”“天上的星宿是打不得的。

具体说就是把某星宿当作某封国的分野,某星宿当作某州的分野,或反过来把某国当作某星宿的分野,某州当作某星宿的分野。扪参历井是说入蜀之路在益、雍两州极高的山上,人们要仰着头摸着天上的星宿才能过去。”夸饰地描写星光灿烂、照耀宫阙殿堂的景象。

唐代温庭筠的《太液池歌》:“夜深银汉通柏梁,二十八宿朝玉堂。”

古人认为人间有功名的人是天上星宿降生的,这是迷信说法。 古代常用天文历法词语

星宿宿(xiu),古代把星座称作星宿。”是说物产华美有天然的珍宝,龙泉剑光直射斗宿、牛宿的星区。

东方七宿如同飞舞在春天夏初夜空的巨龙,故而称为东官苍龙

北方七宿似蛇、龟出现在夏天秋初的夜空,故而称为北官玄武

西方七宿犹猛虎跃出深秋初冬的夜空,故而称为西官白虎

南方七宿像一展翅飞翔的朱雀,出现在寒冬早春的夜空,故而称为南官朱雀。

如王勃《滕王阁序》:“豫章故郡,洪都新府。

《范进中举》:“如今却做了老爷,就是天上的星宿。刘禹锡诗:“鼙鼓夜闻惊朔雁,旌旗晓动拂参星。

二十八宿又叫二十八舍或二十八星,是古人为观测日、月、五星运行而划分的二十八个星区,用来说明日、月、五星运行所到的位置。

李白《蜀道难》:“扪参历井仰胁息,以手抚膺坐长叹

2 读中国的自然地理与天文地理之我见,一篇文章,800字左右

自然地理学的研究对象是自然地理环境,包括只受到人类间接或轻微影响,而原有自然面貌未发生明显变化的天然环境,和长期受到人类直接影响而使原有自然面貌发生重大变化的人为环境 自然地理 自然地理环境是指地球表面,具有一定厚度的圈层,即岩石圈、水圈、大气圈、生物圈相互作用、相互渗透的区间内的一个特殊圈层它是在太阳辐射能、地球内能和生物能作用下形成的,比地球的其他圈层的特征要复杂得多在这里各种固体、液体、气体状态的物质同时稳定地存在并且相互渗透只有在地球的这一部分才具有生物产生和繁衍的条件,并成为生物圈进一步发展的强大因素人类出现后,又成为人类生活和生产活动的环境 自然地理学的研究内容随着学科的发展越来越广泛,但主要还是研究各自然地理成分的特征、结构、成因、动态和发展规律;研究各自然地理成分之间的相互关系,彼此之间的物质和能量的循环与转化的动态过程;研究自然地理环境的地域分异规律;研究各个区域的部门自然地理和综合自然地理特征,并进行自然条件和自然资源的评价,为区域开发提供科学依据;研究受人类干扰、控制的人为环境的变化特点、发展趋势、存在的问题,寻求合理利用的途径和整治措施 但是天文地理,我国古代天文学从原始社会就开始萌芽了我国最早的天象观察,可以追溯到好几千年以前无论是对太阳、月亮、行星、彗星、新星、恒星,以及日食和月食、太阳黑子、日珥、流星雨等罕见天象,都有着悠久而丰富的记载,观察仔细的程度,这些记载至今仍具有很高的科学价值在我国河南安阳出土的殷墟甲骨文中,已有丰富的天文象现的记载这表明远在公元前14世纪时,我们祖先的天文学已很发达了举世公认,我国有世界上最早最完整的天象记载我国是欧洲文艺复兴以前天文现象最精确的观测者和记录的最好保存者 我国古代对著名的流星雨,如天琴座、英仙座、狮子座等流星雨,各有好多次记录,光是天琴座流星雨至少就有10次,英仙座的至少也有12次狮子座流星雨由于1833年的盛大"表演"而特别出名从公元902~1833年,我国以及欧洲和阿拉伯等国家,总共记录了13次狮子座流星雨的出现,其中我国占7次,最早的一次是在公元931年10月21日,是世界上的第二次纪事从公元前7世纪算起,我国古代至少有180次以上的这类流星雨纪事 自然地理和天文地理有着各自的历史和各自的文化,更有着它们各自引领我们去探索的奥秘。

3 有关天文地理的小文章

天文地理知识1、八大行星 水金地火木土星,天王海王绕外边; 唯有地球生物现,温气液水是由缘①。

①温,适宜的温度。气,适宜生物呼吸的大气。

2、地球特点 赤道略略鼓,两极稍稍扁。自西向东转,时间始变迁。

南北为经线,相对成等圈。东西为纬线,独成平行圈; 赤道为最长,两极化为点。

3、东西南北半球的划分 西经二十度,东经一百六,一刀切下去,东西两半球。 南北半球分,赤道零纬度, (四季温带显,南北相反出。

4、昼夜交替和四季变化 地球自转,昼夜更换。绕日公转,四季出现。

自转一日,公转一年。自西向东,方向不变。

5、地球五带 地球有五带,全靠四线分;回归间热带,极圈分寒温; 寒温各有二,五带温不均①。①温,指温度。

6、地图辨方向 地图方向辨,摆正放眼前;上北下为南,左西右东边。 标图易分辨,经纬网较难;o纬线指南北,东西经线圈。

极地投影图,定向较特殊:对于北半球,心北四周南; 北纬圈东西,自转反时走。对于南半球,心南北四周; 南纬圈东西,自转顺时走。

7、大洲和大洋 地球表面积,总共五亿一;水陆百分比,海洋占七一。 陆地六大块,含岛分七洲;亚非南北美,南极大洋欧。

水域四大洋,太平最深广;大西“S”样,印度北冰洋。 板块构造学,六块来拼合;块内较稳定,交界地震多。

8、大洋和大洲的位置 洋以洲为界,洲以洋分野。太平洋为四洋首,位于亚澳两美间。

大西洋西南北美,东岸临界欧与非。印度洋临亚非澳,南部三洋水相连。

北冰洋面为最小,亚欧北美三洲环。 9、七大洲分界和位置 地表十分陆占三,亚欧非洋两美南①。

亚欧两洲本一体,乌拉高加分两边②; 亚非原本相结连,苏伊运河来割断③;亚洲北美隔水望,白令海峡在中间; 中美南北来牵线,巴拿运河又阻拦④;数大洋洲面积小,似断不断亚下边。 亚欧非洋东半球,南北美占西半边,唯有南极搞独立,冰层覆盖称高原。

①洋,大洋洲。两美,南美洲和北美洲。

南,南极洲。②乌拉,乌拉尔山脉和乌拉尔河。

高加,高加索山脉。③苏伊运河,苏伊士运河。

④巴拿运河,巴拿马运河。 10、七大洲地形 (1)亚洲 亚洲地形杂,中高四周洼。

冲积平原广,山地高原大。 -江河放射流,水资源可夸。

(2)欧洲 半岛缘海多,形体分节肢;山地居南北,中部平原低; 地形平原主,海拔倒第一。 (3)北美洲 东部高原联山地,西部山地接高原。

东西相间高大陆,世称湖海在其间。 (4)南美洲 安第斯山雄踞西,东部平原高原区。

地形多为世界最,高原平原列首位。 西部山脉为最长,亚马逊河流域广。

热带雨林居世首,草原要数潘帕斯。 (5)非洲 平均海拔六百米,号称大陆高原洲,东部高原连一体,西部沙漠平原有。

(6)大洋洲 面积小,分两区,一大陆,二岛屿。大陆东西高,中部是盆地。

(7)南极洲 四周环三洋,多年冰雪积;超过二千米,海拔数第一。M$E 11、海底地形 浅海大陆架,外缘大陆坡;洋盆海沟岭,洋底不可测。

12、地形变化 地形变化,内外力加。沧海桑田,内部力大; 板块运动,拉伸挤压,断层褶皱,出现高洼;火山地震,板块缘发。

外部力量,不可轻它; 风浪水冰,侵蚀变化,天长日久,削高填洼。 13、天气和气候 天气:短时阴晴雨雪冷热风 #气候:多年平均春夏和秋冬 14、气温分布规律 气温分布有差异,低纬高来高纬低; w陆地海洋不一样,夏陆温高海温低, 地势高低也影响,每千米相差6℃ 15、地球变暖危害 冰川融化,沿海被淹。

采取措施,刻不容缓。 16、风的形成 温高气上升,低压下形成;气自高压来,流动形成风。

17、地球气压带 高气压带四,低气压带三:南北五度间,高温气上翻, 赤道低气压,降水造方便;南北三十度,气流下偏转, 副热高气压,少雨常干旱;G极地气压低,靠近两极点; 南北六十度,副极低压然。 18、地球风带 气压带相隔,风带共有六:信风赤道搂,东风两极出,南北西风带,四十、六十度 l&G 19、降水形成条件 空汽饱,气温降;凝结核,相碰撞;体重加,雨雪降。

20、降水分布规律 赤道热,降水多:两极寒,降水难。X回归线,分西边;陆西岸,副高带, 信风吹,降水亏;陆东岸,季风故,气候温,降水富。

中纬度,居内部;距海远,气候干。 21、影响气候的因素 影响气候因素,四个方面兼顾;纬度位置第一,赤道两极悬殊; 其次要看海陆,远海夏季干酷;地形也很重要,高寒背风雨勿; 洋流不可低估,暖流到来水富 22、陆地自然带分布与特征 地表气候不一般,植被动物随着变。

九自然带分布谈,热温类型各有三; 亚寒苔原冰原带,另外高山垂直变。热带雨林赤道边,高温多雨树参天; 猩猩猿猴时常现,河马大象不少见。

热带草原夹两边,非洲南美最广泛; 干湿两季南北反,稀树密草动物欢;狮犀斑马长颈鹿,干季向着水草迁。 热带沙漠回归线,非澳两洲最大片;草木稀少多沙丘,鸵鸟骆驼耐饿旱。

温带沙漠居陆间,亚美澳非都可见;夏季高温冬季寒,植被较少能耐干。 温带草原四季显,多位北半球中间;雨水较少草尤短,黄羊野兔最常见。

温带森林阔叶繁,熊猫梅花鹿罕现。北部亚寒针叶林,松树云杉能耐寒; 亚美北部欧大半。

4 关于天文地理的书有什么,求推荐

天文有 《我爱天文观测——青少年天文观测活动 指导》(天文爱好者丛书)——地震出版 社 《大宇宙百科全书》——海南出版社

也是经典!就是太难看懂。 《夜空》

经典!《果壳中的宇宙》

《时间简史》的姊妹篇。 许多天文同好为其四处苦苦寻求。 《美丽星空》

88个星座的内容很详尽,书后还有一些 有用的数据和表格,只可惜星图印刷效果 不好,有些粗糙。(本人也买了这本书, 里面内容很好,在最后还有很多观星数据 ,星图等资料哦!所以物有所值) 《星空观测指南》

其中关于“天体照相”和“暗室技术”的内容 值得一看。 《剑桥插图天文学史》

个人认为一般。 《黑洞》

这本书不错,与另一本《黑洞与时间弯曲 》都属于湖南科学技术出版社的“第一推 动丛书”系列。与《黑洞与时间弯曲》相 比,《黑洞》侧重于物理概念的解释。 新天文观测手册》

好想是最近出版的书,我没看过。看过的 同好给我介绍一下哈! 《大众天文学》

全书共分七篇,分别介绍了地球,月亮, 太阳,行星世界,彗星、流星、及陨星、恒星宇宙以及天文仪器等。很详实。就是 太贵。

大约为329301397206圈。

计算方法:公转周期/自转周期

太阳绕银河系的公转周期为226000000年,而其自转周期为2505天,两者相除得结果。

扩展资料

太阳系位置

太阳只是宇宙中一颗十分普通的恒星,但它却是太阳系的中心天体。太阳系中,包含我们的地球在内的八大行星、一些矮行星、彗星和其它无数的太阳系小天体,都在太阳的强大引力作用下环绕太阳运行。

太阳系的疆域庞大,仅以冥王星为例,其运行轨道距离太阳就将近40个天文单位,也就是60亿千米之遥远,而实际上太阳系的范围还要数十倍于此。

但是这样一个庞大的太阳系家族,在银河系中却仅仅只是十分普通的沧海一粟。银河系拥有至少1000亿颗以上的恒星,直径约10万光年。

太阳位于银道面之北的猎户座旋臂上,距离银河系中心约30000光年,在银道面以北约26光年,它一方面绕着银心以每秒250公里的速度旋转,周期大概是25亿年,

另一方面又相对于周围恒星以每秒197公里的速度朝着织女星附近方向运动。太阳也在自转,其周期在日面赤道带约25天;两极区约为35天。

太阳正在穿越银河系内部边缘猎户臂的本地泡区中的本星际云。在距离地球17光年的距离内有50颗最邻近的恒星系(距离最近的一颗恒星是红矮星,被称为比邻星,距太阳大约42光年),

太阳的质量在这些恒星中排在第四。太阳在距离银河中心24000至26000光年的距离上绕着银河公转,从银河北极鸟瞰,太阳沿顺时针轨道运行,大约2亿2500万至2亿5000万年绕行一周。

由于银河系在宇宙微波背景辐射(CMB)中以550公里/秒的速度朝向长蛇座的方向运动,这两个速度合成之后,太阳相对于CMB的速度是370公里/秒,朝向巨爵座或狮子座的方向运动。

在南门二(比邻星所在的三合星系统)的位置观看我们的太阳时,太阳则会成为仙后座中一颗视星等为05等的恒星。大体来说,仙后座的外形将会从\/\/变成/\/\/,太阳将会位在仙后座ε星的尾端。

-太阳

欢迎分享,转载请注明来源:表白网

原文地址:https://h5.hunlipic.com/xing/2741968.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2024-01-09
下一篇2024-01-09

发表评论

登录后才能评论

评论列表(0条)

    保存