利用岩石的核物理性质,发展了多种测井方法。早在20世纪40年代初,人们就利用岩石的天然放射性,开创了自然伽马测井,随后又发展了自然伽马能谱测井;利用中子与物质相互作用的各种效应,发展了中子-伽马测井、中子-中子测井、中子寿命测井、中子活化测井和非弹性散射伽马能谱测井;利用伽马射线与物质相互作用的康普顿效应和光电效应,又发展了密度测井(伽马-伽马测井)和岩性密度测井等等。这些以岩石核物理性质为基础的测井方法统称为核测井法,它们已成为测井技术的一个重要分支,在生产中广泛应用。
1341 自然伽马与自然伽马能谱测井
探测井下岩石自然伽马射线总强度以研究岩石天然放射性相对强弱的方法叫自然伽马测井,而测定一定能量范围内自然伽马射线强度以区分岩石中放射性元素的类型及其含量的方法叫自然伽马能谱测井。
13411 自然伽马测井(GR)
(1)岩石的自然放射性
自然界的岩石和矿石均不同程度地具有一定的放射性,并几乎全部是由于其中不同程度地含有放射性元素铀(238U)、钍(232Th)、锕(227Ac)及其衰变物,以及钾的放射性同位素(40K)产生的。除含铀矿石外,岩石中放射性元素的类型、含量与岩石的性质及其形成过程中的物理、化学条件有关。通常火成岩的放射性最强,其次是变质岩,最弱是沉积岩。沉积岩的放射性又可进一步分为高、中、低三种类型。
高自然放射性岩石:包括泥岩(特别是深海泥岩)、砂质泥岩和钾盐层等;
中等自然放射性岩石:包括泥质砂岩、泥质石灰岩(白云岩)和钙质泥岩等。
低自然放射性岩石:包括砂岩、石灰岩、白云岩和煤层等,更低的是石膏和岩盐层。
从以上分类可以看出,除钾盐层外,沉积岩的自然放射性主要与岩石中含泥质的多少有关。岩石含泥质越多,自然放射性越强。这是因为构成泥质的粘土颗粒较细,比表面积大,沉积时间长,且有较强的吸附离子的能力和离子交换能力,因而在沉积过程中能够吸附较多的溶液中放射性元素的离子,并有较充分时间进行离子交换,从而表现为较强的自然放射性。这一特性为我们利用自然伽马测井曲线区分岩石性质、评价地层特性和定量估计岩石中泥质含量提供了重要依据。
(2)自然伽马测井评价地层特性
自然伽马测井利用闪烁计数器测量探测器周围伽马射线的总强度,即单位时间内计数器输出的脉冲数,单位是cpm。目前常用API标准单位,它是将仪器放在不同已知放射性地层中刻度得出的。
图13-19 自然伽马曲线划分岩性剖面的实例
由于伽马射线的穿透能力和仪器灵敏度的限制,自然伽马测井的探测深度约20~30cm。测井曲线与前述电测井和声测井曲线不同之处是由于放射性统计涨落使曲线表现出微细的锯齿状;另外,由于仪器在井内连续移动和记录仪率表电路时间常数的影响,使测井曲线向着探测器移动方向产生位移并造成读数幅度降低。在岩层较薄时,这种变化更加显著。因此,实际测井时需要选择适当的测井速度和时间常数以减小这种影响。
自然伽马测曲线的分层原则仍是急剧变化点分层,其主要应用如下。
a划分岩性。基于沉积岩石的自然放射性与其中所含泥质的多少关系密切,因而可以用自然伽马曲线划分不同含泥质的地层。如图13-19是砂泥岩剖面几种不同岩性地层上测得的伽马曲线的实例。可以看出,纯泥岩层自然伽马读数最高,纯砂岩层最低,而泥质砂岩和粉砂岩介于两者之间,并与自然电位曲线有很好的对应关系。用自然伽马曲线划分岩性剖面还有其独特优越,因为它不受地层水和泥浆滤液矿化度的影响,且能在已下套管的井中进行测量。另外,在碳酸盐岩剖面上,高电阻特性会导致自然电位曲线变得平直,自然伽马曲线都仍能清晰地分辨出泥岩层、泥质与非泥质地层。
b计算泥质含量。若储集岩石的自然放射性是由于泥质产生,则不含泥质的纯岩石的自然伽马读数将具有最低值,纯泥岩层具有最高值,而介于这两者之间的读数则反映着一定的泥质含量。如果读数高低与泥质含量之间具有线性关系,则可按下式计算泥质含量
勘查技术工程学
式中:GGR为目的层的自然伽马读数。
和分别是解释层段内纯泥岩层和纯砂岩层的自然伽马读数。
大量统计分析表明,所述线性关系并不完全正确。由式(134-1)计算的V′SH与实际泥质含量VSH之间具有非线性关系,且与地层的地质时代有关,它们之间关系如图13-20所示。其关系式为
勘查技术工程学
式中:C为地区经验系数。通常老地层C=2,新地层C=37。
c地层对比。利用自然伽马曲线进行井间地层对比要比用自然电位和电阻率曲线好,因为它不受井间泥浆性能差异和地层流体性质变化的影响,但测井曲线的标准化十分必要。
13412 自然伽马能谱测井
自然伽马能谱测井是基于岩石中铀、钍、钾三种放射性核素在衰变时放出的伽马射线的能谱不相同而提出的一种测定这几种元素含量的测井方法。
图13-20 V′SH与泥质含量VSH的统计关系
根据对铀、钍、钾放出的伽马射线的能谱进行分析,40K只有单一能量为146MeV的伽马射线,而铀系和钍系的伽马射线能谱分别在176MeV和262MeV处有一明显峰值,如图13-21所示。因此,通过将记录的伽马射线能量转换为脉冲幅度输出,并用多道脉冲幅度分析器就可分别测出各自的伽马射线强度,进而分析铀、钍、钾的含量。
从图13-21可以看出,各能量谱之间存在着交叉或干扰,为了从整个谱系中解析出三种元素的特征谱对总计数率的贡献(称为解谱),需要开设多个能量窗口进行测量,列出方程组求解。这可通过多道能谱分析仪来实现,它共设五个能量窗,两个低能窗:015~05MeV和05~11MeV,三个高能窗:132~1575MeV(称为钾窗)、1650~2390MeV(称为铀窗)和2475~2765MeV(称为钍窗)。五个能量窗输出的信号分别送入五个计数器进行计数,然后通过解谱,便可获得所述三种放射性元素的含量。
图13-21 铀、钍、钾伽马射线能谱图
自然伽马能谱测井最终可输出五条曲线,它们是总自然伽马曲线(SGR)、钍含量曲线(THOR),单位为10-6;铀含量曲线(URAN),单位为10-6;以及钾含量曲线(POTA),单位是%;另一条是“无铀”的GGR曲线,它是钍、钾含量的叠加。
1342 中子测井(NL)
中子测井在于利用中子源(连续中子源或脉冲中子源)发出高能中子射入地层,其与物质原子核相作用时会发生一系列的核反应。利用这些核反应,形成了多种测井方法。
13421 中子与物质的相互作用
中子是不带电荷的粒子,它能穿过原子的核外电子壳层与原子核相碰撞,并随着中子能量的不同将主要产生两种过程,一种是弹性散射,一种是非弹性散射。
(1)中子的弹性散射
能量低于10MeV的中子与物质作用主要产生弹性散射。在这过程中,中子与原子核每碰撞一次,损失一部分能量,速度降低,并朝着一定方向进行散射。经多次碰撞,能量减至0025eV时,弹性散射过程结束,此时的中子称为热中子,随即像分子热运动一样在物质中进行扩散,当其再与原子核碰撞时,失去和得到的能量几乎相等。热中子在扩散过程中,由于速度较慢,在原子核周围停留时间较长,因而容易被原子核俘获。元素原子核俘获热中子之后,处于激发状态,当它回到稳定的基态时,多余的能量将以伽马射线的形式释放出来,称为俘获伽马射线或二次伽马射线。
在测井常见的核素中,氢元素具有最强的减速能力,由快中子变为热中子的过程最短;氯元素的俘获能力最强,因而,热中子的扩散过程最短,且氯核俘获热中子之后释放出的伽马射线的能量比一般元素的都高。根据这一特性,在含氢量较多的岩石中,离中子源较远的地方,那里的热中子密度及二次伽马射线强度均较低,反之会较高;而在含氢量相同但含氯量不同的两种岩石中(如油层和水层),含氯高的岩石,将会记录到更低的热中子密度和较高的二次伽马射线强度。
(2)中子的非弹性散射及中子活化
中子的能量高于10MeV时,与物质作用主要产生非弹性散射。在这一过程中,高能快中子与元素原子核相碰撞,其能量不仅使原子核获得动能,还能使核跃升一个能级而变得不稳定。当回到基态时,放出伽马射线,称为非弹性散射伽马射线。在测井常见的核素中12C和16O具有较大的非弹性散射截面,且产生的非弹性散射伽马射线的能量较高。
用高能快中子照射稳定的原子核还能使其活化成为新的放射性核素,并有一定的半衰期,其衰变产生的伽马射线叫活化伽马射线。活化伽马射线的能量因元素而异,但其强度还与中子源的源强、照射时间以及停止照射后开始测量的时间有关。
13422 中子-中子测井
中子-中子测井通常使用半衰期长且产额较稳定的镅-铍中子源。它是利用放射性元素镅(95An)衰变时放出的α射线与铍(4Be)发生核反应产生中子。这种中子源发出的中子流是连续的,其平均能量约45MeV。因此,在岩石中主要产生弹性散射。
中子-中子测井又可分为两种类型:一种是测量探测器周围热中子密度的中子-热中子测井;另一种是测量探测器周围超热中子密度的中子-超热中子测井。
(1)中子-热中子测井
采用一种在外壁上涂有锂或硼的闪烁计数器,利用锂或硼对热中子强吸收后放出α粒子,使计数器荧光体发光的特性,将单位体积内的热中子数(热中子密度)转换为电脉冲数进行记录。由于在离中子源一定距离处的热中子密度取决于两种因素,即介质的减速特性和俘获特性,因此,热中子的空间分布同时受着这两种特性的影响。在源距为45~60cm的情况下,若介质中不含有俘获能力很大的元素(如氯元素),含氢量高的介质测得的热中子读数为低值,并随着含氢量增高读数降低,如图13-22所示。这表明,热中子测井读数能直接反映岩层孔隙度的大小。若还有氯元素存在,由于热中子被强烈吸收,使热中子读数明显降低,此时测井读数将不再是含氢量的单一反映,对计算的孔隙度将带来较大的误差。
图13-22 在不同含氢岩石中热中子的分布
为了消除井孔和岩石中氯元素对热中子读数求取孔隙度的影响,目前中子-热中子测井广泛采用补偿的形式,即用长、短两种源距进行测量,称为补偿中子测井(CNL)。此时,在不含结晶水的岩石中,有
长源距
勘查技术工程学
短源距
勘查技术工程学
式中NL和NS分别为长、短源距的热中子计数率;a为与井径有关的系数;b为仪器常数;c为氯元素的影响系数。
上二式相减得
勘查技术工程学
式(134-5)表明,测量长、短源距计数率比值的对数,能消除井孔和岩层中氯元素的影响而直接与孔隙度有关,使补偿中子测井成为目前主要孔隙度测井方法之一。
实际的补偿中子测井是以孔隙度为单位进行记录的。它是将仪器放在已知孔隙度的纯石灰岩地层上进行刻度,将长、短源距的计数率比值转换为孔隙度单位,称为“石灰岩孔隙度”。按照这种刻度方式,在纯石灰岩地层上测得的孔隙度将等于地层的真孔隙度,而在非纯石灰岩的其他地层上,测得的孔隙度读数将不等于地层的真孔隙度,称之为“视石灰岩孔隙度”。
(2)中子-超热中子测井
能量介于01~100eV的中子称为超热中子,它的空间分布只取决于介质的减速特性而与俘获特性无关。因此,对变为热中子之前的超热中子密度进行记录能直接反映岩层的含氢量,进而更好的求取孔隙度。
采用一种专门的超热中子探测器可以记录超热中子。这种探测器由热中子计数管及其外壁的镉层和石蜡层构成。镉的作用是吸收周围的热中子,而只让超热中子通过进入石蜡层,然后再经石蜡减速成热中子被记录。
为了减少井孔影响,超热中子测井采用贴井壁方式进行测量,称为“井壁超热中子测井”或“井壁中子测井”。源距采用28~46cm,同样以石灰岩孔隙度单位进行记录。
1343 密度与岩性密度测井
在井下仪器中安置伽马源,放射出的伽马射线将与周围岩石中元素原子的核外电子发生碰撞而损失能量并产生散射和吸收,测量不同能量窗口内的散射伽马射线强度,发展了两种测井方法——密度测井和岩性密度测井。
13431 密度测井(DEN)
密度测井又称伽马-伽马测井,它利用137Cs作为伽马源,可放射出能量为066MeV的伽马射线。这些中等能量的伽马射线在岩石中与原子的核外电子发生碰撞首先发生康普顿散射,散射结果,入射伽马射线的能量降低并经过一定距离之后,部分被吸收而使强度减小。这一特性可用康普顿散射吸收系数μK来描述,它等于单位体积中所有电子散射截面σK的总和,即
勘查技术工程学
式中:ne为单位体积中的电子数(称为电子密度),可表示为
勘查技术工程学
式中:NA为阿伏伽德罗常数;ρb为岩石的体积密度(g/cm3);Z为原子序数;A为相对原子质量。
对于沉积岩中的大多数元素而言,Z/A比值接近于1/2,并在入射伽马射线一定能量范围内σK是个常数,因而可近似认为
勘查技术工程学
密度测井测量的是一次散射到达探测器且能量高于200keV的散射伽马射线的强度,在该能量界限内散射伽马射线的强度只与康普顿散射有关,即只反映岩石的体积密度。在适当源距情况下,它随岩石密度的增大而减小。考虑到伽马射线散射后的能量降低和强度减小,实际的密度测井仪采用较短(十余厘米)的源距并贴向井壁进行测量,还通过补偿的方式进一步消除泥饼对测量结果的影响。于是,密度测井又有补偿密度或补偿地层密度测井之称。
在采用长短源距进行补偿测量的情况下,可以分别测量长源距和短源距两种计数率NL和NS,通过仪器刻度并联立求解,可以获得被探测地层的体积密度值ρb。在无泥饼存在时,它等于地层的真密度;而在有泥饼的地层上,它等于长源距计数率求得的视密度与泥饼校正值Δρ之和,故实际的密度测井同时输出ρb和Δρ两条曲线。
密度测井与声波、中子测井一起常被称为三种孔隙度测井,广泛用于求取储层孔隙度。密度测井计算孔隙度的基本依据是,测井测得的岩石体积密度ρb等于岩石骨架密度ρma与孔隙流体密度ρf的加权和,即
勘查技术工程学
解出φ得
勘查技术工程学
式中ρma对于不同的岩石有不同的数值,如砂岩为265g/cm3,石灰岩为271g/cm3,白云岩为287g/cm3,孔隙中水(泥浆滤液)的密度ρf=1g/cm3。若岩石骨架由多种矿物构成,以及岩石含泥质时,孔隙度需利用泥质多矿物岩石模型进行计算。
另外,密度测井与声波和中子测井曲线相配合用于划分气层也很有用,在含气层的地方,常常显示为声波时差增大,中子孔隙度减小,密度曲线显示为低的密度读数。
13432 岩性密度测井(LDT)
岩性密度测井综合利用了康普顿散射和光电吸收两种效应。对于构成沉积岩的绝大多数元素而言,原子序数一般在1~20之间。伽马射线与这些轻元素作用,能量在025~25MeV之间时,以康普顿散射为主;能量小于025MeV时,以光电效应为主;并导致伽马射线能量耗尽而最终被吸收。因此,能量为0661MeV的伽马源放出的伽马射线进入地层后,经过康普顿散射能量降低并向着主要发生光电效应的低能区过渡时,散射伽马射线的强度将主要决定于介质的光电吸电特性,即光电吸收截面。如果在低能区一定谱段内开设窗口专门测量光电吸收能级范围内的散射伽马射线,显然,光电吸收截面越大的介质中测得的散射伽马射线强度会越低。
在入射伽马射线的能量一定的情况下,光电吸收截面是岩石中元素原子序数Z的单一函数,即原子序数越大,光电吸收截面越大。原子序数Z的数值又取决于它的化学成分,因此岩性密度测井能直接反映地层的岩性。根据研究,伽马光子与元素原子发生作用的光电吸收截面σ与元素原子序数Z的46次方成正比。若定义一个与σ/Z成正比例的参数,称为光电吸收截面指数,用Pe表示,则有
勘查技术工程学
式中K为比例常数。
由于σ的单位为靶/原子,Z的单位为电子/原子,故Pe的单位为靶/电子。岩性-密度测井就在于通过仪器刻度将测得的低能区范围内的散射伽马射线强度转换为Pe值进行记录。同时,它还记录一条密度曲线ρb和一条称为体积光电吸收截面指数的曲线U。U的定义是
勘查技术工程学
单位为10-28m2/cm3。
表13-1列出了常见岩、矿石的Pe和U值以及相应的体积密度和中子测井孔隙度。利用表中数据,再结合Pe测井结果就能较准确地判断岩性、研究矿物成分和确定某些高原子序数的重矿物等。用岩性密度测井确定岩性的优点还在于Pe测量结果与地层孔隙中的油气关系不大(因其Pe值很小),岩石孔隙度的改变对测量结果的影响也很小。
表13-1 常见岩矿石及流体的Pe、U及ρb和ΦN值
黑洞是一种引力极强的天体,就连光也不能逃脱。当恒星的史瓦西半径小到一定程度时,就连垂直表面发射的光都无法逃逸了。这时恒星就变成了黑洞。说它“黑”,是指它就像宇宙中的无底洞,任何物质一旦掉进去,“似乎”就再不能逃出。由于黑洞中的光无法逃逸,所以我们无法直接观测到黑洞。然而,可以通过测量它对周围天体的作用和影响来间接观测或推测到它的存在。黑洞引申
义为无法摆脱的境遇。2011年12月,天文学家首次观测到黑洞“捕捉”星云的过程。 黑洞热力学,或称作黑洞力学,是发展于1970年代将热力学的基本定律应用到广义相对论领域中黑洞研究而产生的理论。虽然至今人们还不能清晰地理解阐述这一理论,黑洞热力学的存在强烈地暗示了广义相对论、热力学和量子理论彼此之间深刻而基础的联系。尽管它看上去只是从热力学的最基本原理出发,通过经典和半经典理论描述了热力学定律制约下的黑洞的行为,但它的意义远超出了经典热力学与黑洞的类比这一范畴,而将强引力场中量子现象的本性包含其中。 黑洞[1-2]的产生过程类似于中子星的产生过程;恒星的核心在自身重力的作用下迅速地收缩,塌陷,发生强力爆炸。当核心中所有的物质都变成中子时收缩过程立即停止,被压缩成一个密实的星体,同时也压缩了内部的空间和时间。但在黑洞[3]情况下,由于恒星核心的质量大到使收缩过程无休止地进行下去,中子本身在挤压引力自身的吸引下被碾为粉末,剩下来的是一个密度高到难以想象的物质。由于高质量而产生的力量,使得 任何靠近它的物体都会被它吸进去。黑洞开始吞噬恒星的外壳,但黑洞并不能吞噬如此多的物质,黑洞会释放一部分物质,射出两道纯能量——伽马射线。 也可以简单理解:通常恒星的最初只含氢元素,恒星内部的氢原子时刻相互碰撞,发生聚变。由于恒星质量很大,聚变产生的能量与恒星万有引力抗衡,以维持恒星结构的稳定。由于聚变,氢原子内部结构最终发生改变,破裂并组成新的元素——氦元素。接着,氦原子也参与聚变,改变结构,生成锂元素。如此类推,按照元素周期表的顺序,会依次有铍元素、硼元素、碳元素、氮元素等生成。直至铁元素生成,该恒星便会坍塌。这是由于铁元素相当稳定不能参与聚变,而铁元素存在于恒星内部,导致恒星内部不具有足够的能量与质量巨大的恒星的万有引力抗衡,从而引发恒星坍塌,最终形成黑洞。说它“黑”,是指它就像宇宙中的无底洞,任何物质一旦掉进去,就再不能逃出。跟白矮星和中子星一样,黑洞可能也是由质量大于太阳质量好几倍以上的恒星演化而来的。当一颗恒星衰老时,它的热核反应已经耗尽了中心的燃料(氢),由中心产生的能量已经不多了。这样,它再也没有足够的力量来承担起外壳巨大的重量。所以在外壳的重压之下,核心开始坍缩,物质将不可阻挡地向着中心点进军,直到最后形成体积接近无限小、密度几乎无限大的星体。而当它的半径一旦收缩到一定程度(一定小于史瓦西半径),质量导致的时空扭曲就使得即使光也无法向外射出——“黑洞”诞生了。恒星的时空扭曲改变了光线的路径,使之和原先没有恒星情况下的路径不一样。光在恒星表面附近稍微向内偏 折,在日食时观察远处恒星发出的光线,可以看到这种偏折现象。当该恒星向内坍塌时,其质量导致的时空扭曲变得很强,光线向内偏折得也更强,从而使得光线从恒星逃逸变得更为困难。对于在远处的观察者而言,光线变得更黯淡更红。最后,当这恒星收缩到某一临界半径(史瓦西半径)时,其质量导致时空扭曲变得如此之强,使得光向内偏折得这么也如此之强,以至于光线再也逃逸不出去 。这样,如果光都逃逸不出来,其他东西更不可能逃逸,都会被拉回去。也就是说,存在一个事件的集合或时空区域,光或任何东西都不可能从该区域逃逸而到达远处的观察者,这样的区域称作黑洞。将其边界称作事件视界,它和刚好不能从黑洞逃逸的光线的轨迹相重合。 与别的天体相比,黑洞十分特殊。人们无法直接观察到它,科学家也只能对它内部结构提出各种猜想。而使得黑洞把自己隐藏起来的的原因即是弯曲的时空。根据广义相对论,时空会在引力场作用下弯曲。这时候,光虽然仍然沿任意两点间的最短光程传播,但相对而言它已弯曲。在经过大密度的天体时,时空会弯曲,光也就偏离了原来的方向。 在地球上,由于引力场作用很小,时空的扭曲是微乎其微的。而在黑洞周围,时空的这种变形非常大。这样,即使是被黑洞挡着的恒星发出的光,虽然有一部分会落入黑洞中消失,可另一部分光线会通过弯曲的空间中绕过黑洞而到达地球。观察到黑洞背面的星空,就像黑洞不存在一样,这就是黑洞的隐身术。 更有趣的是,有些恒星不仅是朝着地球发出的光能直接到达地球,它朝其它方向发射的光也可能被附近的黑洞的强引力折射而能到达地球。这样我们不仅能看见这颗恒星的“脸”,还同时看到它的“侧面”、甚至“后背”,这是宇宙中的“引力透镜”效应。 一个来自以色列特拉维夫大学的天文学家小组发现,宇宙中最大质量黑洞的首次快速成长期出现在宇宙年龄约为12亿年时,而非之前认为的20~40亿年。天文学家们估计宇宙目前的年龄约为136亿年。 同时,这项研究还发现宇宙中最古老、质量最大的黑洞同样具有非常快速的成长。有关这一发现的详细情况将发表在最新一期的《天体物理学报》。
大型黑洞巨型黑洞 宇宙中大部分星系,包括我们居住的银河系的中心都隐藏着一个超大质量黑洞。这些黑洞质量大小不一,大约100万个太阳质量到大约100亿个太阳质量。 天文学家们通过探测黑洞周围吸积盘发出的强烈辐射推断这些黑洞的存在。物质在受到强烈黑洞引力下落时,会在其周围形成吸积盘盘旋下降,在这一过程中势能迅速释放,将物质加热到极高的温度,从而发出强烈辐射。黑洞通过吸积方式吞噬周围物质,这可能就是它的成长方式。 这项最新的研究采用了全世界最先进的地基观测设施,包括位于美国夏威夷莫纳克亚山顶,海拔4000多米处的北双子座望远镜,位于智利帕拉那山的南双子座望远镜,以及位于美国新墨西哥州圣阿古斯丁平原上的甚大阵射电望远镜。
美国科学家发现三个特大黑洞的踪影。科学家对此十分振奋,黑洞之谜或许因此而揭开。
新发现的黑洞,位置在距地球5 000~1亿光年的处女座与白羊座中。专家指出,大部分黑洞质量,只比太阳多出数倍,但是新搜集到的数据显示,这三个黑洞的质量,是太阳的5000~1亿倍。
大质量黑洞的成长 观测结果显示,出现在宇宙年龄仅为12亿年时的活跃黑洞,其质量要比稍后出现的大部分大质量黑洞质量小10倍。但是它们的成长速度非常快,因而现在它们的质量要比后者大得多。通过对这种成长速度的测算,研究人员可以估算出这些黑洞天体之前和之后的发展路径。
该研究小组发现,那些最古老的黑洞,即那些在宇宙年龄仅为数亿年时便开始进入全面成长期的黑洞,它们的质量仅为太阳的100到1000倍。研究人员认为这些黑洞的形成和演化可能和宇宙中最早的恒星有关。
天文学家们还注意到,在最初的12亿年后,这些被观测的黑洞天体的成长期仅仅持续了1亿到两亿年。
这项研究是一个已持续7年的研究计划的成果。特拉维夫大学主持的这项研究旨在追踪研究宇宙中最大质量黑洞的演化,并观察它们对宿主星系产生的影响。
已知最大的黑洞 美国加州大学伯克利分校华裔天文学家马中佩带领一个科研小组,最近发现了科学界迄今所知最大的两个黑洞。它们分别位于NGC 3842和NGC 4889星系,属银河系的中心地带,距离地球约27万光年,每个质量约为太阳的100亿倍。
吸积 黑洞通常是因为它们聚拢周围的气体产生辐射而被发现的,这一过程被称为吸积。高温气体辐射热能的效率会严重影响吸积流的几何与动力学特性。目前观测到了辐射效率较高的薄
黑洞拉伸,撕裂并吞噬恒星
盘以及辐射效率较低的厚盘。当吸积气体接近中央黑洞时,它们产生的辐射对黑洞的自转以及视界的存在极为敏感。对吸积黑洞光度和光谱的分析为旋转黑洞和视界的存在提供了强有力的证据。数值模拟也显示吸积黑洞经常出现相对论喷流也部分是由黑洞的自转所驱动的。
天体物理学家用“吸积”这个词来描述物质向中央引力体或者是中央延展物质系统的流动。吸积是天体物理中最普遍的过程之一,而且也正是因为吸积才形成了我们周围许多常见的结构。在宇宙早期,当气体朝由暗物质造成的引力势阱中心流动时形成了星系。即使到了今天,恒星依然是由气体云在其自身引力作用下坍缩碎裂,进而通过吸积周围气体而形成的。行星(包括地球)也是在新形成的恒星周围通过气体和岩石的聚集而形成的。当中央天体是一个黑洞时,吸积就会展现出它最为壮观的一面。但黑洞并不是什么都吸收的,它也往外边散发质子。蒸发 由于黑洞的密度极大,根据公式我们可以知道密度=质量/体积,为了
黑洞喷射物不断变亮[4]
让黑洞密度无限大,那就说明黑洞的体积要无限小,然后质量要无限大,这样才能成为黑洞。黑洞是由一些恒星“灭亡”后所形成的死星,它的质量极大,体积极小。但黑洞也有灭亡的那天,按照霍金的理论,在量子物理中,有一种名为“隧道效应”的现象,即一个粒子的场强分布虽然尽可能让能量低的地方较强,但即使在能量相当高的地方,场强仍会有分布,对于黑洞的边界来说,这就是一堵能量相当高的势垒,但粒子仍有可能出去。
毁灭 黑洞会发出耀眼的光芒,体积会缩小,甚至会爆炸。当英国物理学家史迪芬·霍金于1974年做此预言时,整个科学界为之震动。
霍金的理论是受灵感支配的思维的飞跃,他结合了广义相对论和量子理论。他发现黑洞周围的引力场释放出能量,同时消耗黑洞的能量和质量。
假设一对粒子会在任何时刻、任何地点被创生,被创生的粒子就是正粒子与反粒子,而如果这一创生过程发生在黑洞附近的话就会有两种情况发生:两粒子湮灭、一个粒子被吸入黑洞。“一个粒子被吸入黑洞”这一情况:在黑洞附近创生的一对粒子其中一个反粒子会被吸入黑洞,而正粒子会逃逸,由于能量不能凭空创生,我们设反粒子携带负能量,正粒子携带正能量,而反粒子的所有运动过程可以视为是一个正粒子的为之相反的运动过程,如一个反粒子被吸入黑洞可视为一个正粒子从黑洞逃逸。这一情况就是一个携带着从黑洞里来的正能量的粒子逃逸了,即黑洞的总能量少了,而爱因斯坦的公式E=mc^2表明,能量的损失会导致质量的损失。
当黑洞的质量越来越小时,它的温度会越来越高。这样,当黑洞损失质量时,它的温度和发射率增加,因而它的质量损失得更快。这种“霍金辐射”对大多数黑洞来说可以忽略不计,因为大黑洞辐射的比较慢,而小黑洞则以极高的速度辐射能量,直到黑洞的爆炸。
按物理性质划分
根据黑洞本身的物理特性质量,角动量,电荷划分,可以将黑洞分为四类。
不旋转不带电荷的黑洞:它的时空结构于1916年由施瓦西求出称施瓦西黑洞。
不旋转带电黑洞:称R-N黑洞。时空结构于1916至1918年由赖斯纳(Reissner)和纳自敦(Nordstrom)求出。
旋转不带电黑洞:称克尔黑洞。时空结构由克尔于1963年求出。
一般黑洞:称克尔-纽曼黑洞。时空结构于1965年由纽曼求出。
双星黑洞:与其他恒星一块形成双星的黑洞。 克尔-纽曼黑洞的特点
转动且带电荷的黑洞,叫做克尔--纽曼黑洞。这种结构的黑洞视界和无限红移面会分开,而且视界会分为两个(外视界r+和内视界r-),无限红移面也会分裂为两个(rs+和rs-) 。外视界和无限红移面之间的区域叫做能层,有能量储存在那里。越过外无限红移面的物体仍有可能逃离黑洞,这是因为能层还不是单向膜区。
r±=M±√(M^2-a^2-Q^2)
rs±=M±√(M^2-a^2cos^2·θ-Q^2)
r±=GM/c^2±√[(GM/c^2)^2-(J/Mc)^2-GQ^2/c^4]
(其中,M、J、Q分别代表黑洞的总质量、总角动量和总电荷。a=J/Mc为单位质量角动量)
单向膜区内,r为时间,t是空间。穿过外视界进入单向膜区得物体,将只能向前,穿过内视界进入黑洞内部。内视界以里的区域不是单向膜区,那里有一个“奇环”,也就是时间终止的地方。物体可以在内视界内自由运动,由于奇环产生斥力,物体不会撞上奇环,不过,奇环附近有一个极为有趣的时空区,在那里存在“闭合类时线”,沿这种时空曲线运动的物体可以不断地回到自己的过去。 1928年,一位印度研究生——萨拉玛尼安·钱德拉塞卡——乘船来到英国剑桥跟英国天文学家阿瑟。爱丁顿爵士(一位广义相对论家)学习。钱德拉塞卡意识到,不相容原理所能提供的排斥力有一个极限。恒星中的粒子的最大速度差被相对论限制为光速。这意味着,恒星变得足够紧致之时,由不相容原理引起的排斥力就会比引力的作用小。钱德拉塞卡计算出;一个大约为太阳质量一倍半的冷的恒星不能支持自身以抵抗自己的引力。(这质量现在称为钱德拉塞卡极限。)前苏联科学家列夫·达维多维奇·兰道几乎在同时也发现了类似的结论。 宇宙十大奇异黑洞现象(10张)这对大质量恒星的最终归宿具有重大的意义。如果一颗恒星的质量比钱德拉塞卡极限小,它最后会停止收缩并终于变成一颗半径为几千英里和密度为每立方英寸几百吨的“白矮星”。白矮星是它物质中电子之间的不相容原理排斥力所支持的。我们观察到大量这样的白矮星。第一颗被观察到的是绕着夜空中最亮的恒星——天狼星转动的那一颗。 兰道指出,对于恒星还存在另一可能的终态。其极限质量大约也为太阳质量的一倍或二倍,但是其体积甚至比白矮星还小得多。这些恒星是由中子和质子之间,而不是电子之间的不相容原理排斥力所支持。所以它们被叫做中子星。它们的半径只有10英里左右,密度为每立方英寸几亿吨。在中子星被第一次预言时,并没有任何方法去观察它。实际上,很久以后它们才被观察到。 另一方面,质量比钱德拉塞卡极限还大的恒星在耗尽其燃料时,会出现一个很大的问题:在某种情形下,它们会爆炸或抛出足够的物质,使自己的质量减少到极限之下,以避免灾难性的引力坍缩。但是很难令人相信,不管恒星有多大,这总会发生。爱丁顿为此感到震惊,他拒绝相信钱德拉塞卡的结果。爱丁顿认为,一颗恒星不可能坍缩成一点。这是大多数科学家的观点:爱因斯坦自己写了一篇论文,宣布恒星的体积不会收缩为零。其他科学家,尤其是他以前的老师、恒星结构的主要权威——爱丁顿的敌意使钱德拉塞卡抛弃了这方面的工作,转去研究诸如恒星团运动等其他天文学问题。然而,他获得1983年诺贝尔奖,至少部分原因在于他早年所做的关于冷恒星的质量极限的工作。 钱德拉塞卡指出,不相容原理不能够阻止质量大于钱德拉塞卡极限的恒星发生坍缩。但是,根据广义相对论,这样的恒星会发生什么情况呢?这个问题被一位年轻的美国人罗伯特·奥本海默于1939年首次解决。然而,他所获得的结果表明,用当时的望远镜去观察不会再有任何结果。以后,因第二次世界大战的干扰,奥本海默非常密切地卷入到原子弹计划中去。战后,由于大部分科学家被吸引到原子和原子核尺度的物理中去,因而引力坍缩的问题被大部分人忘记了。 1967年,剑桥的一位研究生约瑟琳·贝尔发现了天空发射出无线电波的规则脉冲 的物体,这对黑洞的存在的预言带来了进一步的鼓舞。起初贝尔和她的导师安东尼·赫维许以为,他们可能和我们星系中的外星文明进行了接触!我的确记得在宣布他们发现的讨论会上,他们将这四个最早发现的源称为LGM1-4,LGM表示“小绿人”(“Little Green Man”)的意思。然而,最终他们和所有其他人都得到了不太浪漫的结论,这些被称为脉冲星的物体,事实上是旋转的中子星,这些中子星由于在黑洞这个概念刚被提出的时候,共有两种光理论:一种是牛顿赞成的光的微粒说;另一种是光的波动说。我们现在知道,实际上这两者都是正确的。由于量子力学的波粒二象性,光既可认为是波,也可认为是粒子。在光的波动说中,不清楚光对引力如何响应。但是如果光是由粒子组成的,人们可以预料,它们正如同炮弹、火箭和行星那样受引力的影响。起先人们以为,光粒子无限快地运动,所以引力不可能使之慢下来,但是罗麦关于光速度有限的发现表明引力对之可有重要效应。 1983年,剑桥的学监约翰·米歇尔在这个假定的基础上,在《伦敦皇家学会哲学学报》上发表了一篇文章。他指出,一个质量足够大并足够紧致的恒星会有如此强大的引力场,以致于连光线都不能逃逸——任何从恒星表面发出的光,还没到达远处即会被恒星的引力吸引回来。米歇尔暗示,可能存在大量这样的恒星,虽然会由于从它们那里发出的光不会到达我们这儿而使我们不能看到它们,但我们仍然可以感到它们的引力的吸引作用。这正是我们现在称为黑洞的物体。 事实上,因为光速是固定的,所以,在牛顿引力论中将光类似炮弹那样处理实在很不协调。(从地面发射上天的炮弹由于引力而减速,最后停止上升并折回地面;然而,一个光子必须以不变的速度继续向上,那么牛顿引力对于光如何发生影响呢?)直到1915年爱因斯坦提出广义相对论之前,一直没有关于引力如何影响光的协调的理论。甚至又过了很长时间,这个理论对大质量恒星的含意才被理解。 观察一个恒星坍缩并形成黑洞时,因为在相对论中没有绝对时间,所以每个观测者都有自己的时间测量。由于恒星的引力场,在恒星上某人的时间将和在远处某人的时间不同。假定在坍缩星表面有一无畏的航天员和恒星一起向内坍缩,按照他的表,每一秒钟发一信号到一个绕着该恒星转动的空间飞船上去。在他的表的某一时刻,譬如11点钟,恒星刚好收缩到它的临界半径,此时引力场强到没有任何东西可以逃逸出去,他的信号再也不能传到空间飞船了。当11点到达时,他在空间飞船中的伙伴发现,航天员发来的一串信号的时间间隔越变越长。但是这个效应在10点59分59秒之前是非常微小的。在收到10点59分58秒和10点59分59秒发出的两个信号之间,他们只需等待比一秒钟稍长一点的时间,然而他们必须为11点发出的信号等待无限长的时间。按照航天员的手表,光波是在10点59分59秒和11点之间由恒星表面发出;从空间飞船上看,那光波被散开到无限长的时间间隔里。在空间飞船上收到这一串光波的时间间隔变得越来越长,所以恒星来的光显得越来越红、越来越淡,最后,该恒星变得如此之朦胧,以至于从空间飞船上再也看不见它,所余下的只是空间中的一个黑洞。然而,此恒星继续以同样的引力作用到空间飞船上,使飞船继续绕着所形成的黑洞旋转。 黑洞吞噬中子星但是由于以下的问题,使得上述情景不是完全现实的。离开恒星越远则引力越弱,所以作用在这位无畏的航天员脚上的引力总比作用到他头上的大。在恒星还未收缩到临界半径而形成事件视界之前,这力的差就已经将航天员拉成意大利面条那样,甚至将他撕裂!然而,在宇宙中存在质量大得多的天体,譬如星系的中心区域,它们遭受到引力坍缩而产生黑洞;一位在这样的物体上面的航天员在黑洞形成之前不会被撕开。事实上,当他到达临界半径时,不会有任何异样的感觉,甚至在通过永不回返的那一点时,都没注意到。但是,随着这区域继续坍缩,只要在几个钟头之内,作用到他头上和脚上的引力之差会变得如此之大,以至于再将其撕裂。 罗杰·彭罗斯在1965年和1970年之间的研究指出,根据广义相对论,在黑洞中必然存在无限大密度和空间——时间曲率的奇点。这和时间开端时的大爆炸相当类似,只不过它是一个坍缩物体和航天员的时间终点而已。在此奇点,科学定律和预言将来的能力都失效了。然而,任何留在黑洞之外的观察者,将不会受到可预见性失效的影响,因为从奇点出发的不管是光还是任何其他信号都不能到达。这令人惊奇的事实导致罗杰·彭罗斯提出了宇宙监督猜测,它可以被意译为:“上帝憎恶裸奇点。”换言之,由引力坍缩所产生的奇点只能发生在像黑洞这样的地方,在那儿它被事件视界体面地遮住而不被外界看见。严格地讲,这是所谓弱的宇宙监督猜测:它使留在黑洞外面的观察者不致受到发生在奇点处的可预见性失效的影响,但它对那位不幸落到黑洞里的可怜的航天员却是爱莫能助。 1928年,一位印度研究生——萨拉玛尼安·钱德拉塞卡——乘船来到英国剑桥跟英国天文学家阿瑟。爱丁顿爵士(一位广义相对论家)学习。钱德拉塞卡意识到,不相容原理所能提供的排斥力有一个极限。恒星中的粒子的最大速度差被相对论限制为光速。这意味着,恒星变得足够紧致之时,由不相容原理引起的排斥力就会比引力的作用小。钱德拉塞卡计算出;一个大约为太阳质量一倍半的冷的恒星不能支持自身以抵抗自己的引力。(这质量现在称为钱德拉塞卡极限。)前苏联学家列夫·达维多维奇·兰道几乎在同时也发现了类似的结论。 宇宙十大奇异黑洞现象(10张)这对大质量恒星的最终归宿具有重大的意义。如果一颗恒星的质量比钱德拉塞卡极限小,它最后会停止收缩并终于变成一颗半径为几千英里和密度为每立方英寸几百吨的“白矮星”。白矮星是它物质中电子之间的不相容原理排斥力所支持的。我们观察到大量这样的白矮星。第一颗被观察到的是绕着夜空中最亮的恒星——天狼星转动的那一颗。 兰道指出,对于恒星还存在另一可能的终态。其极限质量大约也为太阳质量的一倍或二倍,但是其体积甚至比白矮星还小得多。这些恒星是由中子和质子之间,而不是电子之间的不相容原理排斥力所支持。所以它们被叫做中子星。它们的半径只有10英里左右,密度为每立方英寸几亿吨。在中子星被第一次预言时,并没有任何方法去观察它。实际上,很久以后它们才被观察到。 另一方面,质量比钱德拉塞卡极限还大的恒星在耗尽其燃料时,会出现一个很大的问题:在某种情形下,它们会爆炸或抛出足够的物质,使自己的质量减少到极限之下,以避免灾难性的引力坍缩。但是很难令人相信,不管恒星有多大,这总会发生。爱丁顿为此感到震惊,他拒绝相信钱德拉塞卡的结果。爱丁顿认为,一颗恒星不可能坍缩成一点。这是大多数科学家的观点:爱因斯坦自己写了一篇论文,宣布恒星的体积不会收缩为零。其他科学家,尤其是他以前的老师、恒星结构的主要权威——爱丁顿的敌意使钱德拉塞卡抛弃了这方面的工作,转去研究诸如恒星团运动等其他天文学问题。然而,他获得1983年诺贝尔奖,至少部分原因在于他早年所做的关于冷恒星的质量极限的工作。 钱德拉塞卡指出,不相容原理不能够阻止质量大于钱德拉塞卡极限的恒星发生坍缩。但是,根据广义相对论,这样的恒星会发生什么情况呢?这个问题被一位年轻的美国人罗伯特·奥本海默于
“人们之所以领悟不到宇宙的秘密,是因为他们习惯于将自己桎梏在眼见为实的牢笼里,不允许自己尽情想象,大胆假设,从而掩盖了直觉的光芒。”
大脑意识与宇宙的联系神秘而值得期待。
英国牛津大学物理学家罗杰·彭罗斯在《皇帝的新脑》一书中写道:当我们处于意识状态时,我们似乎必须意识到某种东西,也许是感觉,诸如痛、温暖或者彩色风景、音乐之声;或者我意识到诸如迷惑、沮丧或快乐的感情;或者我可以意识到某些过去经验的回忆;或者理解其他人讲什么或是自己的一个新思想;或者我意识到想发言或采取行动如从座位上站起来。我还可以“后退一步”意识到这些企图、或者自己痛的感觉、或者自己记忆的经验、或者自己获取的理解、甚至只是对自己意识的意识。
传统观念认为,意识是物质之间的一种反应,来源于大脑自动的复杂计算。当身体死亡后,血液、氧气和新陈代谢能量停止了,意识也就终结了。
近年来,美国亚利桑那大学麻醉学和心理学系荣誉教授、意识研究中心负责人斯图亚特·哈梅罗夫和彭罗斯共同提出了一种新观点:编制-客观还原(Orchestrate Objective Reduction)理论,也称Orch-OR理论,认为意识是产生于量子水平的时空结构,其生理基础是神经元内部的“微管”结构。编制(orchestrate)即神经元突触输入端在微管中“精心编制”了量子计算,客观还原是说,意识起始于叠加态,由于意识的自我-坍塌(self-collapse)而使多重世界还原为一个确定的世界。
时空全息与信息获取
美国乔普拉福利中心副主管、内分泌专家迪帕克·乔普拉曾在对哈梅洛夫的一次采访中问他:“大脑位于颅骨中,并没有跑到外面去体验外部的世界,它只是对内部条件,如pH值、电解液、激素、细胞膜离子交换和电脉冲等起反应。大脑是怎样看到外部世界的呢?”
“这个问题可以追溯到几千年前。”哈梅罗夫说,“一些希腊哲学家认为,外部世界只是我们头脑中表现出来的,其实并不存在。笛卡尔也理所当然这么认为,他说能让他确认自己存在的唯一的东西,就是他的意识,‘我思故我在’。因此,我们也不能确切认定,外部世界就是我们所认为的那个样子。有人认为,世界是人们构想出来的,是一种幻觉;另一些人认为,它是一种精确的表现;还有一种混合观点,认知的世界确实有其外部存在,但加入了量子性质时,它就变得不确定了。”
比如人们在看一朵玫瑰,并不是真的看到了玫瑰,其实只是视网膜对光子的反应。哈梅罗夫解释说,很可能光子在它到达眼睛最后面的视紫质之前,就被转换成量子信息了。所以当光子进入眼睛经过视网膜时,量子信息被从中提取出来,以某种更直接的方式传达了玫瑰的基本特征或属性。这也正是意识体验的难题:我们真切地感受到各种特征,如红色、疼痛、悲伤、遗憾、喜悦、幸福,所有这些感觉都是意识觉知。大部分人认为,视网膜就像一架照相机,把图像传到大脑计算机里的某个部位,但看图的是谁?
哈梅罗夫提出,玫瑰的基本属性,如红色、气味及其他特征,哲学家称之为“感受特征”(qualia)的,其实是在非常基本的时空层面上的特定波动。由于时空几何结构由虚空构成,是全息的,所以我们的视网膜和大脑能通过量子过程和玫瑰的本质属性连接,从而在头脑里获取这些信息。通过量子过程,我们得以体验到红色、香味及其他性质,也在意识中以各种形状、各种形式体验着爱、善良、真实等感受特征,在意识中把这些特质理解为是外部世界的。
“从传统唯物主义角度来看,感受特征是大脑中创造的,是经过神经元计算后呈现出来的性质。但我认为不是这样。神经元计算是一种无意识的、自动处理的行为,而感受特征和意识虽然依附于神经元计算,但却并不一样。不同之处就在于与时空几何结构的量子连接。”哈梅罗夫说。
这也正是彭罗斯的观点。宇宙是由原子之间的虚空所构成,如果进入微观,在比原子小得多的多的尺度,随着事物变得越来越小,一切都变得光滑而丧失特征,到了比原子还小25个数量级的尺度,也就是所谓的普朗克尺度,存在着某种图案,或者说粗糙不平、几何结构、信息等。
在这种最基本的量子引力水平,普朗克尺度的结构造成了物理上不可再分的特征,就像质量、自旋和电荷那样。感受特征也是如此。哈梅罗夫和彭罗斯都认为,前意识或意识本身,或许正是嵌在这种普朗克尺度的几何结构中,正像质量、自旋和电荷构成了物质世界一样。换句话说,意识的本质特征就是它是深及宇宙的最基本尺度,并在各个尺度都保留着全部信息,所以大脑中的量子生物过程才能获得各种感受特征。
量子意识理论
哈梅罗夫认为,从本质上说,意识就是一种量子过程。比如在“看”的过程中,你能看到颜色、动作、形状——所有这些性质都属于一个目标。这些不同的属性在不同的脑区被处理,时间上也略有差异,但以某种方式被结合在一起成为对该目标的意识认知:一只鸟、一架飞机、一只风筝或无论什么东西。这不是一串特征,它们是同一件事物。伽马同步(gamma synchrony)与这种整合有关,但还不能完全解释它。如果意识是量子,那些不同的属性是结合的、纠缠在一个量子叠加系统中,然后在一个意识瞬间自行坍塌,将这些属性统一起来。
为了解释量子力学中所谓的测量问题,哥本哈根解释是几种可能之一。波函数表示某事物的一种量子态,即粒子可以同时处于叠加位置,多种状态或多个位置。在某个情况下,波函数坍塌了,所有的可能性变成了一种确定的真实。但这一解释把意识排除在了科学之外。另一种解释即多重世界解,实际也是量子叠加态能持续多久、达到多大的问题。按照多重世界的观点,如果你有一个同时存在两种可能性的量子系统,每种可能性都会发展演变成它自己的整个新宇宙。宇宙在最基本水平发生分裂,我们有无数个这种重叠宇宙。
彭罗斯的观点有点倾向于多重世界解。他认为分裂的宇宙并不稳定,由于一种客观临界值的限定,也会在特定时间还原,或自身坍塌为特定状态——这叫做客观还原(objective reduction),或称OR理论。而意识起始于叠加,一个非常简单的关于不确定原理的方程,E=h/t,确定了一次意识事件的波场。基于这个方程而发生了自身坍塌,当坍塌发生时,就产生了量子化的意识瞬间(conscious moment)。
意识瞬间是自身坍塌的结果,它们是不连续的,但发生速度非常快,给人一种连续的感觉,一般来说大约每秒钟40次。在哈梅罗夫和彭罗斯的模型中,意识瞬间与伽马射线同步脑电图是一致的。但不一定是40次。威斯康辛州戴维德森实验室曾研究过几位西藏僧人的禅修情况,发现他们的同步性(synchrony)不是40次,达到了每秒80~100次之间。所以他们在禅修状态中,意识瞬间比其他人更多,也比他们禅修前更多。这些意识瞬间,或者称为意识量子,很像电磁波谱里的光子。在电磁波谱中,你能发现高能、迅速、高频的光子,如紫外线;也能发现更慢、更长的波,如红外线。而意识事件也有一种频谱。
哈梅罗夫说,比如在禅修时,我们会转换到更高频率,这样意识瞬间更多,体验强度也会更高。就像从红光变为紫外光,意识的转变也类似于此。当意识发生时,外部世界慢慢在脑海中呈现出来。比如在汽车遇到事故突然急转弯时,人们会感觉外部世界变慢了,因为人的意识瞬间从每秒40次提升到了80次,相对于感知增强,外部世界就显得慢了。著名橄榄球运动员乔·纳马斯曾说,当他在比赛中处于巅峰状态时,好像每一件事情都慢了下来。有一次当他触地得分时,数千名观众在欢呼,而他看到每一件事都是慢动作,整场都安静下来,没有一点声音。迈克尔·乔丹也说过,当他发挥良好时,会感觉对方运动员的动作变慢了。很可能他们把意识瞬间从每秒40次提升到了100次,所以外界慢下来,甚至几乎停止。
“微管”连接意识与量子时空
哈梅罗夫与彭罗斯联合提出,意识是产生于量子尺度的时空结构,在普朗克尺度的时空结构中,可能有某种东西和宇宙信息相连接,而神经元内部的“微管”结构是它的生物终端。
哈梅罗夫说:“20世纪70年代,我在医学院的时候,最早对细胞分裂中的微管产生了兴趣。那时我才发现神经元中还有微管。而在那之前,电子显微镜的固定剂把微管给溶解了,使细胞内部看起来就像是水。但随后人们意识到,那里还有着森林般的结构。大约在那时,X射线晶体摄影术显示了微管的结构,是一种圆柱形的格子框架,差不多就像晶体那样。”
那时哈梅罗夫正在学计算机。所以在他看来,微管就像一种计算机开关网络,其中每个微管蛋白亚单位的状态就代表着某种类似比特的东西,如一个1或一个0。如果真是这样,就意味着细胞内部在进行着大量的信息处理。大部分人将大脑视为1000亿个神经元,每个神经元是一个开关,一个1或0的比特。神经元之间的每个突触几毫秒变换一个比特。但如果看看每个神经元的内部,会看到速度更快、更加密集的微管信息处理器。在头脑中,微管处理信息的速度大约是每秒1027次。
“想一下草履虫,那些单细胞生物。它们游来游去,寻找食物和配偶,它们交配、学习,它们能从毛细管中迅速逃脱。而它们没有神经元,没有突触,它们做到这些全靠它们的微管。它们能做到这一点,一个神经元应该也能聪明地运用自身的微管。”哈梅罗夫说,“据我计算,在每个神经元的微管中,信息处理速度约为每秒1015次,这还只是大脑中一个神经元微管的信息处理能力。大脑的全部能力更强得多,达到每秒1027次。”
哈梅罗夫解释说,微管是细胞骨架的一部分,在细胞内部类似于骨骼的支架。它们的作用是在细胞有丝分裂时分离染色体,在神经发育中推进轴突、树突和突触向前生长,调整突触参与记忆活动。如果它们断裂,人们会得老年痴呆症。
微管是中空的圆柱,由单个的花生形状的蛋白质——微管蛋白构成。微管蛋白能自行组装成细胞的结构和外形。神经元中的微管最多。当一个神经元发育时,微管自行组装并沿一定的方向生长。就像印度人玩的绳索戏法,表演者向上扔出一根绳索,然后自己爬上去。微管差不多就是这样形成了细胞,然后最终形成突触。当细胞形成后,微管好像就能处理信息、组织行动了。
人工智能完全是建立在唯物主义前提的基础上,人脑就是一台计算机,与硅芯片制造的计算机并无差别,而意识和感受特征都是从复杂的计算中自然出现的性质。物质是与时空结构有关的东西,到了时空基本结构的层面,我们需要进一步探索物质的起源,是否也是意识的起源。
乔普拉认为,在东方智慧传统中,在主体与客体的分离之前也有意识,那种意识就是前意识(proto-consciousness)。有一种底层的东西分裂成了主观和客观。还原主义科学就建立在这种主观和客观的分离上,是人为的,而本质是一。
哈梅罗夫说,二元论者认为物质与意识是各自独立的,唯心主义者认为意识产生了物质,唯物主义者认为是物质产生了意识,而泛心论者认为物质和意识差不多是一回事。但我认为,或许理解意识和物质的最合理方式是,更多地按照西方中立一元论(West neutral monism)提出的路线,有一种底层的东西,既能产生物质,又能产生意识。这在东方智慧传统中,是不二论。
如果你把这种底层的东西看作是与基本时空结构相关的量子叠加态,然后根据该系统的坍塌方式,你就会既能得到完全的物质,又能得到与意识相伴的物质——通过彭罗斯的客观还原,这发生在每个意识瞬间。所以,站在西方中立一元或东方不二论的立场,我们的解释非常符合这种底层的本质。
非定域的意识可能再生吗?
哈梅罗夫认为,他们的理论确实能解释意识,意识就像涟漪,是在宇宙基本水平逐渐扩散的,这可能就是阿卡西场、玻姆的隐含秩序、普朗克尺度的几何结构。这许多描述说的几乎都是同一个事物。
如此一来,我们是谁?我们的意识是非定域的吗?我们也是非定域的生物,而在转世获得肉体的时候被局限了吗?对此,哈梅罗夫说,从量子物理学角度考虑,生物间通过量子纠缠而互相连接在一起。“当我们以这个身体生存时,意识几乎都被局限在大脑中。我们和世界上的其他人都有着量子纠缠,或许在另一种状态下、以某种非定域分布的形式存在。或许当我们死后,神经元内微管中的量子信息以某种更广大的形式存在于宇宙中,仍保持着纠缠。换句话说,就是我们仍保持着某种自我认知,知道我们是谁,或许这就是‘灵魂’。所以当人们死后,离体的量子信息——‘灵魂’可能存在于普朗克尺度的时空,并可能再生。”
乔普拉说:“东方宗教传统认为,当我们死后,会返回到一种纯潜在性的状态,这就是我们的纯意识。甚至以可能性叠加的形式保留着记忆。这里我是用现代语言来解释,他们可能会说,转世再生实际上是那些可能性场域被再一次定域化。我们是一个更大的可能性场域的一部分,这种场域叫作阿卡西场(Akashic field)。它是永恒的。”
死亡时,时空中的量子信息不会消灭,而是可能漏出来,或弥散成一种更加全息式的分布,但仍然保持纠缠。这种理论可以解释一些人出现的濒死经历。哈梅罗夫在纪录片《科学频道—穿越虫洞》中表示:“心脏停止跳动,血液停止流动,微管失去了它们的量子态,但微管内的量子信息并没有遭到破坏,也无法被破坏,离开肉体后重新回到宇宙。如果患者苏醒过来,这种量子信息又会重新回到微管,患者会说‘我体验了一次濒死经历’。如果没有苏醒过来,患者便会死亡,这种量子信息将存在于肉体外,这也许就是“灵魂”的形式。”
近几年来,越来越多的濒死体验研究发现,人在死亡时会突然爆发强烈的、有组织的脑活动。
死亡脑活动是“灵魂”的信号吗?
很多经历过濒死体验(NDEs)后生还的志愿者报告称,他们的意识觉知好像从大脑和物质身体中分离出来。他们所描述的现象也相当一致,比如见到白光、身处隧道,安详的气氛、已故的爱人,往事重现,等等。还有些案例中,志愿者还说他们漂浮在自己身体外面,这称为出体体验(OBEs)。而在各种形式的禅修、心灵创伤事件中,志愿者也报告过大量类似体验。据盖洛普民意调查估计,约1000万美国人有过濒死或出体体验。一种叫作克他命(ketamine)的离解麻醉剂,也能产生志愿者所说的体外意识觉知,还有许多其他的精神性药物,也有这种效果。
2010年,奥永DB等人在《麻醉与无痛》杂志上发表论文,描述了三位脑损伤病人的案例。他们虽然脑伤严重,但从技术上讲濒危脑死亡。撤去生命支持支前,病人的BIS值(注:利用现代科学手段检测与意识有关的脑电活动,比如用高频同步脑电描记法即伽马同步和BIS监测仪、SEDline监测仪等)在40或以下,其中一个接近0;撤去生命支持后不久,接近心脏死亡时,三位病人的BIS值都突然跳到近80,并维持了30到90秒,然后数值才突然返回到接近0。
对这种死亡脑活动的可能解释是,这是一种非功能性的,一般性的神经元去极化。但这无法解释全脑有组织的相干性同步。意识现象涉及多脑区信息处理的整合,让我们能把周围环境形成一个统一的体验,而不是一个个分离的感觉印象。不同脑区的同步活动表示它在把各个方面的感觉特征结合在一起。
哈梅罗夫和乔普拉认为,虽然还不能证明,但死亡脑活动很好地代表了濒死/出体体验,这些现象在志愿者当中非常一致,通常是愉悦的感受,并被描述为生命的改变和有益的。即使那些怀疑濒死体验是超自然、“灵魂”事件人,也同意这些体验对于生还者来说是有益的,有价值的。如果死亡脑活动确实与濒死/出体体验、“灵魂”离体有关,那么死亡病人也会经历。死亡脑活动或许正是一种“灵魂”的信号。
人死后仍有的意识觉知(conscious awareness),或可称之为“灵魂”,这是东西方宗教几千年来的固有观点。传统观念认为,身体死亡后,血液、氧气和新陈代谢能量停止了,这种意识觉知也就终结了。
死亡是意识创造的幻觉吗?
同样认可“多重世界解释”的还有美国北卡罗来纳州韦克福雷斯特大学医学院的罗伯特·兰扎。他认为,按照生物中心主义理论,我们所了解的死亡是一种我们的意识创造出来的幻觉。
兰扎在网站上写道:相信这个世界是一种客观的、不依赖于观察者的独立存在,是我们传统思维方式的基础。但大量实验显示,事实恰恰相反。我们认为,生命只是碳运动和分子混合——我们暂时生存,很快又回归黄土。
我们相信,人固有一死。也因为我们将自己与身体联系在一起,身体的死亡就意味着故事的结束。但生物中心主义理论认为,死亡也许并不像我们想象的那样具有终结性。生命和生物对现实具有控制力,是生命创造宇宙,而不是相反。这就是说,人的意识决定宇宙中物体的形状和大小。
从生物中心主义者的视角看宇宙,空间和时间并不是以意识告诉我们的那种明确而不容改变的方式在运行。简言之,空间和时间“仅仅是我们精神的工具”。一旦这种认为空间和时间是精神之构想的理论被接受,就意味着死亡和不死的理念存在于一个没有空间或线性边界的世界中。
我们一般拒绝像《星际迷航》那样的科幻故事中所说的多元宇宙,但结果证明,这种普遍猜测只比科学真实多迈了一小步。量子物理学一个广为人知的方面是,观察无法做出绝对预测,而是每个可能的观察位置都有一个不同的概率。对于“多个世界”,主流的解释是,每个可能的观察都对应一个不同的宇宙(多元宇宙)。有无限多个宇宙,每件事可能偶然发生在某个宇宙中。在这些背景下,死亡在实际意义上并不存在。所有可能的宇宙同时存在,不管其中一个发生了什么。
这就意味着死亡不可能“在真正意义上”存在。在我们死后,我们的生命就变成“一朵多年生的花,在多重宇宙中重新开花”。
1月有两次“超级月亮”
2018年1月2日10时24分迎来了2018年的“最大满月”,此次最大满月的地心视直径约为3356角分。所谓“超级月亮”是月亮距离地球最近又恰逢满月的状况,月亮一年内要绕地球转12圈多,每个月都会经过近地点,最近的时候可能达到35万公里,一般情况下在36万至37万公里之间,所以这一现象比较常见。而当满月与经过近地点的时间相隔较近时,“超级满月”会显得格外大。
值得注意的是,在1月31日,“超级月亮”又将出现。天文学家介绍,一个月内出现两个满月,此时月亮距离近地点还相去不远,因此它也是“超级满月”,一个阳历月中出现两次“超级满月”,这是非常少见的。
2018年有4场流星雨值得关注
2018年流星雨预测每小时最大天顶流量超过40颗的有:1月4日的象限仪座流星雨、5月5日的宝瓶座η流星雨、8月13日的英仙座流星雨、12月14日的双子座流星雨。
象限仪座流星雨是出现在1月初的大流星雨。根据以往的极大情况,今年的极大时间可能在北京时间的1月4日6时左右,最佳状态下每小时天顶流星数(ZHR)在110颗左右。
不过天文学家指出,由于当天近满月,月亮光害严重,所以看到流星数目也相对少了,观察条件并不好。而宝瓶座η流星雨极大期小时天顶流量可达50,该流星雨今年恰逢亏凸月,月光影响严重,观察条件同样不佳。
8月13日的英仙座流星雨极大期小时天顶流量可达110,该流星雨活跃期在7月17日至8月24日,极大发生在8月13日4时至16时。该流星雨今年极大期恰逢近朔,月光干扰小,所以观察条件不错,同时,8月11日的新月为所有光学观测提供了一个完美的条件,在北半球中纬度的地方更有利于对英仙座流星雨的观测。
12月14日的双子座流星雨极大期期间小时天顶流量可达120,该流星雨活跃时段在12月4日至17日,今年的极大发生在北京时间12月14日20时30分。今年该流星雨极大期恰逢近上弦月,下半夜月亮已经落下,不受月光干扰,观察条件较好。
一年将现两场月全食
天文学家介绍,今年还将出现两次月全食的精彩天象。月全食是月食的一种,当月亮、地球、太阳完全在一条直线上的时候,地球在中间,整个月亮全部走进地球的影子里,月亮表面变成暗红色,形成月全食。
今年的第一次月全食出现在1月31日,也就是农历的腊月十五。全程初亏19时47分,食既20时51分,食甚21时29分(最大食分1321),生光22时07分,复圆23时11分。
这次月全食恰逢“超级月亮”发生,时间又是自傍晚开始,午夜前结束,观测效果非常好,观测时间也非常合适,堪称“五星级”的精彩天象。在我国,除新疆、西藏外,其他地区都是全程可见,而在新疆、西藏则可见“带食月出”。
第二次月全食在7月28日,正好是今年的“最小满月”发生之时。全程初亏2时24分,食既3时29分,食甚4时21分(最大食分1614),生光5时13分,复圆6时19分。西部、西南部可看到全过程,东部看到“带食而没”。
8月上演“带偏食日落”
今年还将有一次日偏食天象。日偏食是指当月球运行到地球与太阳之间,地球运行到月球的半影区时,地球有一部分被月球阴影外侧的半影覆盖的地区,在此地区所见到的太阳有一部分会被月球挡住的天文现象。
天文学家介绍,今年的日偏食发生在8月11日,我国大部分地区可见。该日18时左右日偏食从我国东北最北端开始,直到19时30分左右结束全程日偏食,我国东部一些地区会看见“带偏食日落”景观。
7月底火星“大冲”,错过要等17年
另一次非常值得关注的天象是发生在7月27日的火星“大冲”。火星冲日,就是火星位于日地连线上,并且和地球同位于太阳的一侧。而当火星在接近近日点时冲,则成为“大冲”,在太阳系的行星“大冲”之中,火星“大冲”是最为典型而壮观的。
今年的火星“大冲”发生在7月27日13时12分,亮度-28等,摩羯座。届时火星行至自2003年8月至2035年9月间与地球距离最近的位置,红色的火星既大又非常明亮。整个8月都将是2018年整夜观测火星的最佳时机。
除了火星“大冲”之外,今年还将出现木星冲日、土星冲日的天象,这是今年木星、土星最亮的时分。其中,木星冲日发生在5月9日8时38分,亮度-25等,天秤座。土星冲日发生在6月27日21时27分,亮度0等,人马座。
此外,今年还将出现两次距离很近的行星“相合”的天象。包括1月7日8时38分发生的火星合水星,火星在水星之南02°,日出前可观测,条件不错。而4月2日23时44分发生的火星合土星,火星在土星之南13°,日出前可见。
全年3次水星逆行,只是“视觉游戏”
除了严格意义上的天文现象以外,天文学家还解释了近年来在网络上颇受关注的“水逆”的由来,指出所谓“水逆”不是科学意义上的天文现象,而是出现在所谓的“星占”中的“术语”,而在天文领域,水星逆行的现象是极为正常且常见的。
天文学家介绍,水星逆行并非水星的实际运行方向反向,而只是一种视觉差。是由于地球、水星二者运行轨道角度差和绕转速度差,而在水星绕轨赶超地球时带来的视觉上的轨迹改变。
这种水星逆行的现象,每年都会发生3到4次,时间也是非常固定的前后持续20天左右。比如今年,水星就将发生3次逆行,第一次3月23日至4月15日,位于白羊座;第二次7月26日至8月19日,位于狮子座;第三次11月17日至12月7日,位于人马座、天蝎座。
那么所谓的“水逆”能不能被大家观测到呢?
天文学家指出,水星本来就很难观测,由于距离太阳太近,经常湮没在太阳的光辉中,与水星的逆行相比,金星、火星、木星的逆行都比较容易观测。今年(2018年)的6月26日到8月27日期间,火星在宝瓶座逆行;而10月5日到11月16日期间,金星会在天蝎座逆行。
欢迎分享,转载请注明来源:表白网
评论列表(0条)