世界十大航天发射地的肯尼迪航天中心

世界十大航天发射地的肯尼迪航天中心,第1张

(Kennedy Space Center,缩写为KSC)位于美国东部佛罗里达州东海岸的梅里特岛,成立于1962年7月,是美国国家航空航天局(NASA)进行载人与不载人航天器测试、准备和实施发射的最重要场所,其名称是为了纪念已故美国总统约翰·肯尼迪(John F Kennedy)。整个场地长55千米,宽10千米,面积567平方公里,约17万人在那里工作。场地上还有一个参观者中心,参观者也可以随导游参观。肯尼迪航天中心是佛罗里达州的一个重要的旅游点。同时由于肯尼迪航天中心大部分地区不开放,它也是一个美国国家野生动物保护区。

目前发射指挥部在39号发射中心,这里也是飞行器组装建筑物的所在地。在它的西部6千米处有两个发射场,向南8千米处是肯尼迪航天中心的工业地区,那里有许多中心的支援设施和管理总部。

肯尼迪航天中心由四个部分组成,工业区、39号发射中心和它的两个发射场LC-39A和LC-39B、飞行器组装建筑物和参观者中心。

除支援设施和管理总部外在工业区内还有国际空间站的太空站制造设备。工作区由装配车间、控制中心、气象中心、新闻工作区组成。控制中心是发射的神经枢纽,气象中心负责提供实时的卫星气象云图、风速等数据,供控制中心参考。装配车间则负责装配火箭或航天飞机,装配完成后,由履带车拖到发射架上。发射架位于距离工作区3公里之外的大西洋畔,两座发射塔分别标号“A”和“B”。

美联社、路透社、CNN等一些世界主要媒体在航天中心设有专职记者,并拥有自己的工作楼。工作楼的一层供文字记者使用,二楼平台则供摄影记者拍摄使用。此外,每逢重大新闻事件,很多电视媒体和文字媒体会租用卫星工作车,进行现场报道。 卡纳维拉尔角作为美国的太空基地已有50多年历史。1949年,时任美国总统的杜鲁门决定将卡纳维拉尔角作为美国导弹发射基地。此后的十多年中,这里一直由美国国防部下属的部门使用,1962年美国宇航局进驻,卡纳维拉尔角才成为军民两用航天发射基地。卡纳维拉尔角之所以被选作发射场地,是因为这里的纬度较低,向东发射火箭,可利用地球自转的附加速度,帮助卫星入轨。

自1950年这里首次发射火箭以来,卡纳维拉尔角先后发射了“宇宙神”火箭、“大力神”火箭等。1981年,航天飞机首次从卡纳维拉尔角发射升空。 39号发射中心一开始是为阿波罗计划建立的。其东部是工场和控制中心。其北边是维护降落的航天飞机的宇宙飞船处理厂。中心的大建筑是飞行器组装建筑物,其中有组装四种不同火箭(包括土星5号运载火箭)和航天飞机的外部燃料箱和固态火箭推进器的装置。组装建筑物的南边是低的工场建筑。这里有组装航天飞机火箭的设施。整个组装建筑物高160米,面积为218x158米。

建筑物内的1号和3号组装台位于建筑物的东边,2号和4号位于西边。由于实际上进行的发射次数比计划的要少,2号组装台只被使用过一次,而4号组装台从未被使用过。今天建筑物西部的一边被用作仓库。建筑物的大门有139米高,由七个门板组成,每个门板可以单个地向上提起。

1976年庆祝美国建国200周年时建筑物的南墙被画上了一面64x335米大的美国国旗。旗上的每个条与一辆公共汽车一样宽。由于建筑物内没有空调装置,过去外面阴雨时建筑物内的顶部会形成雨云,后来建筑物内加入了抽干器后这个问题才被解决。

从组装建筑物有两条通向发射场A(在南边)和发射场B(在北边)的6千米长的路。这两条路是给运输组装好的火箭或航天飞机的爬行者运输车用的。肯尼迪航天中心共有两辆爬行者运输车,每辆重2721吨,载物面积为40x35米。它们是世界上第二大的可转向的车。它们的速度为16千米/小时,因此从组装建筑物到发射场它们需要5小时的时间。对当时的技术来说将110米高的土星5号火箭站立着送到发射场,而且还克服了5%的坡度爬到发射场上,是非常了不起的技术成就。

LC-39A和LC-39B被交替使用,它们就在距离大西洋岸几米的地方。它们互相之间的距离为27千米。今天的航天飞机比当时的土星5号火箭低得多,因此它们被裁短了。今天它们的高度为813米(避雷针没有算入)。

为了防止整个设施和正在起飞的航天器被发射时所造成的声波摧毁,在起飞后几秒钟内向发射场的下部喷射一百多万立升水。虽然如此在土星5号发射时越20千米以外的泰特斯维尔还常常有窗户被震破。

发射场东北和西北角上是圆柱体的氢和氧燃料仓,每个仓可以容纳330万立升冷凝液态的燃料。为了防止爆炸的危险航天飞机的外部燃料箱在起飞前不久才被填满。

航天飞机着陆设施位于组装建筑物西北约32千米处,它主要由一条4572米长和91米宽的跑道组成。通过一条柏油路它与宇宙飞船处理厂相连。假如航天飞机不在肯尼迪航天中心降落的话它会被一架波音747背付运送到肯尼迪航天中心,然后直接在跑道上从飞机背上卸下来。

肯尼迪航天中心参观者中心是一个私人企业,它的运行不依靠美国政府资助。它包括数个博物馆、两个IMAX**院和不同的汽车导游来让游客从近处看否则看不到的、不公开的地方。入门票中包括汽车运送到39号发射场的观察点和运送到阿波罗-土星5号中心。这个中心是一个存放着一个重造的土星5号火箭和其它展览品的大博物馆。在这些展览中有一个重建的阿波罗时期的射击训练场,在那里游客可以重新体验阿波罗的起飞,还有一处地方游客可以重新体会阿波罗11号的着陆。 参观者中心还包括两个由宇航员纪念基金会组织的两个设施。其中最显眼的是太空纪念镜(Space Mirror Memorial),这是一块刻有殉职的宇航员的名字的巨大的黑色花岗岩镜。这些名字不停地被从背面照明。假如可能的话使用自然光,否则使用人工光。这些发光的名字似乎悬浮在反射的天空里。附近的荧光屏里记载着这些宇航员的详细的生平和逝世事件。另一个由基金会组织的设施是太空教育中心,其中包括为教师提供材料的资料中心等。

1949年美国总统哈利·S·杜鲁门在卡纳维尔角设立了实验导弹的联合长距离试验场。这个地方对这样的实验非常有利,因为导弹可以飞向大西洋,而且它比美国其它任何地方离赤道都要近,在赤道附近火箭可以利用地球自转的加速度。美国的第一次亚轨道火箭飞行是在卡纳维尔角获得成功的。

1951年美国空军在巴那那河海军空军基地(Banana River Naval Air Station)附近建立了空军导弹测试中心。苏联的卫星1号发射成功后美国的第一颗人造卫星,海军的前卫一号于1957年12月6日发射成功。1958年国家航空航天局成立,卡纳维尔角被改造为一个重要发射场。红石火箭、木星中程导弹、木星-C火箭、潘星导弹、北极星导弹、雷神火箭、大力神火箭、泰坦火箭和民兵导弹都是在这里成功试验的。雷神后来成为今天主要使用的三角翼火箭的基础,三角翼火箭是1962年7月1日运载Telstar卫星时首次启用的。

登月计划被宣布后卡纳维尔角的操作范围增大扩展到了邻近的梅里特岛上。1962年国家航空航天局开始买地,通过购买它获得了340平方公里,又通过与佛罗里达州的谈判获得了226平方公里。1962年7月这里被命名为发射操作中心。1963年11月为纪念刚刚被刺杀的约翰·肯尼迪总统它被改名为约翰·肯尼迪航天中心。环绕的卡纳维尔角也被改名为肯尼迪角,但当地人对这个新名字不满,因此1973年它又被改回去了。

登月计划共分三个阶段:水星计划、双子座计划和阿波罗计划。水星计划的目标是将人送上地球轨道后再将他们接回来。这个计划于1957年10月开始,使用的是大力神火箭,运载的是水星负荷。一开始的试验使用的是红石火箭,它们将宇航员送到亚轨道飞行,其中包括1961年5月5日艾伦·谢泼德和7月21日维吉尔·格里森的15分钟的的飞行。第一位被大力神运载的宇航员是约翰·格伦,他的飞行是在1962年2月20日进行的。

通过水星计划的经验美国设置了装载两人的双子座运载舱,发射火箭是泰坦二号火箭。第一次双子座发射是在1965年3月23日,宇航员是约翰·杨和弗吉尔·格里森。双子座四号是第一次宇航员登出飞行器的试验,宇航员是爱德华·怀特。从肯尼迪航天中心共起飞过12次双子座飞船。 阿波罗计划使用的是三级的土星5号火箭(高111米,直径为10米),制造厂是波音(第一级)、北美航空工业公司(引擎和第二级)和道格拉斯飞机公司(第三级)。北美航空工业公司还制造了指挥和服务舱,登月舱是由格鲁曼飞机工程公司制造的。IBM、麻省理工学院和通用电气公司提供仪表。

肯尼迪航天中心的新发射中心,39号发射中心共耗费了8亿美元。它包括一个能够同时组装4个土星5号火箭的组装建筑物,一个能够运输5440吨的运输设施,一个136米高的服务结构和一个控制中心。整个建设于1962年11月开始,发射场于1965年10月完工,组装建筑物于1965年6月完工,基础建设与1966年底完成。从1967年到1973年从39号发射中心共发射了13颗土星5号火箭。

39号发射中心启用以前在34号发射中心进行了一系列的土星1号和土星1B的试验。1967年1月27日发生的阿波罗-土星204号(阿波罗1号)的大火造成三名宇航员丧身就是在34号发射中心发生的。

土星5号的试验飞行(阿波罗4号)是在1967年10月30日进行的,第一次载人飞行(阿波罗7号)是1968年10月11日进行的。1968年12月24日和25日阿波罗8号绕月球环绕了10圈。阿波罗9号和阿波罗10号测试登月舱。阿波罗11号于1969年7月16日起飞,7月20日在登月。此后所有的阿波罗飞船都是从肯尼迪航天中心起飞的,一直到1972年12月的阿波罗17号。

空军决定对能够提升重负载的泰坦火箭进一步改进,为此他们在肯尼迪航天中心以南建立了卡纳维尔角空军40号发射中心和卡纳维尔角空军41号发射中心来发射空军的泰坦3号和泰坦4号火箭。泰坦3号的负载与土星1B的差不多,但要便宜得多。这两个发射中心被用来发射间谍、通讯、气象卫星和国家航空航天局的行星探测器。本来空军还打算进行自己的载人飞行,但这些计划后来被取消了。

肯尼迪航天中心在阿波罗计划的同时继续研究非载人火箭。1966年5月30日从卡纳维尔角空军36号发射中心一枚大力神-半人马火箭发射了美国第一颗在月球上软着陆的探测器。此后从这里还发射了另外5颗月球探测器。从1974年到1977年大力神-半人马火箭成为国家航空航天局重负载火箭,用它从借给国家航空航天局的41号发射中心发射了海盗计划和旅行者计划的探测器。后来从这里还发射了美国最强大的不载人火箭,土星4号。

1973年土星5号火箭也是将天空实验室送入轨道的运载火箭。为了适应土星1B的发射,39B号发射场被稍微改变。1973年从这里发射了三次载人赴太空实验室的飞行。1975年从这里发射了阿波罗-联盟测试计划。

肯尼迪航天中心也是航天飞机的发射场和降落地。哥伦比亚号航天飞机是1981年4月12日首次发射的。1986年1月28日挑战者号航天飞机在发射过程中爆炸被毁后到1988年9月29日航天飞机的发射一度中断。

2004年9月,肯尼迪航天中心部分结构被弗朗西斯飓风摧毁。飞行器组装建筑物的南边和东边有一千多块12x3米大的瓦片被揭落,使得整个建筑物3700平方米被暴露在外面。航天飞机防热瓦的生产工厂也遭破坏,部分屋顶被揭开,内部受到严重水害。

全球定位系统 - GPS - 维基百科(Wikipedia)

(January 11) http://wwwhandandailycom

全球定位系统(Global Positioning System,通常简称GPS)是一个中距离圆型轨道卫星导航系统。它可以为地球表面绝大部分地区(98%)提供准确的定位、测速和高精度的时间标准。系统由美国国防部研制和维护,可满足位于全球任何地方或近地空间的军事用户连续精确的确定三维位置、三维运动和时间的需要。该系统包括太空中的24颗GPS卫星;地面上的1个主控站、3个数据注入站和5个监测站及作为用户端的GPS接收机。最少只需其中4颗卫星,就能迅速确定用户端在地球上所处的位置及海拔高度;所能收联接到的卫星数越多,解码出来的位置就越精确。

该系统是由美国政府于20世纪70年代开始进行研制于1994年全面建成。使用者只需拥有GPS接收机,无需另外付费。GPS信号分为民用的标准定位服务(sps,standard positioning service)和军规的精密定位服务(pss,precise positioning service)两类。民用讯号中加有误差,其最终定位精确度大概在100米左右;军规的精度在十米以下。2000年以后,克林顿政府决定取消对民用信号所加的误差。因此,现在民用GPS也可以达到十米左右的定位精度。

GPS系统拥有如下多种优点:全天候,不受任何天气的影响;全球覆盖(高达98%);三维定速定时高精度;快速、省时、高效率;应用广泛、多功能;可移动定位;不同于双星定位系统,使用过程中接收机不需要发出任何信号增加了隐蔽性,提高了其军事应用效能。

GPS系统发展历程

自1978年以来已经有超过50颗GPS和NAVSTAR卫星进入轨道

前身

GPS(又称全球卫星导航系统或全球卫星定位系统)系统的前身为美军研制的一种子午仪卫星定位系统(Transit),1958年研制,1964年正式投入使用。该系统用5到6颗卫星组成的星网工作,每天最多绕过地球13次,并且无法给出高度信息,在定位精度方面也不尽如人意。然而,子午仪系统使得研发部门对卫星定位取得了初步的经验,并验证了由卫星系统进行定位的可行性,为GPS系统的研制埋下了铺垫。由于卫星定位显示出在导航方面的巨大优越性及子午仪系统存在对潜艇和舰船导航方面的巨大缺陷。美国海陆空三军及民用部门都感到迫切需要一种新的卫星导航系统。为此,美国海军研究实验室(NRL)提出了名为Tinmation的用12到18颗卫星组成10000km高度的全球定位网计划,并于67年、69年和74年各发射了一颗试验卫星,在这些卫星上初步试验了原子钟计时系统,这是GPS系统精确定位的基础。而美国空军则提出了621-B的以每星群4到5颗卫星组成3至4个星群的计划,这些卫星中除1颗采用同步轨道外其余的都使用周期为24h的倾斜轨道该计划以伪随机码(PRN)为基础传播卫星测距信号,其强大的功能,当信号密度低于环境噪声的1%时也能将其检测出来。伪随机码的成功运用是GPS系统得以取得成功的一个重要基础。海军的计划主要用于为舰船提供低动态的2维定位,空军的计划能供提供高动态服务,然而系统过于复杂。由于同时研制两个系统会造成巨大的费用而且这里两个计划都是为了提供全球定位而设计的,所以1973年美国国防部将2者合二为一,并由国防部牵头的卫星导航定位联合计划局(JPO)领导,还将办事机构设立在洛杉矶的空军航天处。该机构成员众多,包括美国陆军、海军、海军陆战队、交通部、国防制图局、北约和澳大利亚的代表。

计划

最初的GPS计划在联合计划局的领导下诞生了,该方案将24颗卫星放置在互成120度的三个轨道上。每个轨道上有8颗卫星,地球上任何一点均能观测到6至9颗卫星。这样,粗码精度可达100m,精码精度为10m。 由于预算压缩,GPS计划不得不减少卫星发射数量,改为将18颗卫星分布在互成60度的6个轨道上。然而这一方案使得卫星可靠性得不到保障。1988年又进行了最后一次修改:21颗工作星和3颗备份星工作在互成30度的6条轨道上。这也是现在GPS卫星所使用的工作方式。

计划实施

GPS计划的实施共分三个阶段:

第一阶段为方案论证和初步设计阶段。

从1978年到1979年,由位于加利福尼亚的范登堡空军基地采用双子座火箭发射4颗试验卫星,卫星运行轨道长半轴为26560km,倾角64度。轨道高度20000km。这一阶段主要研制了地面接收机及建立地面跟踪网,结果令人满意。

第二阶段为全面研制和试验阶段。

从1979年到1984年,又陆续发射了7颗称为BLOCK I的试验卫星,研制了各种用途的接收机。实验表明,GPS定位精度远远超过设计标准,利用粗码定位,其精度就可达14米。

第三阶段为实用组网阶段。

1989年2月4日第一颗GPS工作卫星发射成功,这一阶段的卫星称为BLOCK II 和 BLOCK IIA。此阶段宣告GPS系统进入工程建设状态。1993年底使用的GPS网即(21+3)GPS星座已经建成,今后将根据计划更换失效的卫星。

GPS卫星

在测试架上的GPS卫星

GPS卫星是由洛克菲尔国际公司空间部研制的,卫星重774kg,使用寿命为7年。卫星采用蜂窝结构,主体呈柱形,直径为15m。卫星两侧装有两块双叶对日定向太阳能电池帆板(BLOCK I),全长533m接受日光面积为72m2。对日定向系统控制两翼电池帆板旋转,使板面始终对准太阳,为卫星不断提供电力,并给三组15Ah镉镍电池充电,以保证卫星在地球阴影部分能正常工作。在星体底部装有12个单元的多波束定向天线,能发射张角大约为30度的两个L波段(19cm和24cm波)的信号。在星体的两端面上装有全向遥测遥控天线,用于与地面监控网的通信。此外卫星还装有姿态控制系统和轨道控制系统,以便使卫星保持在适当的高度和角度,准确对准卫星的可见地面。

由GPS系统的工作原理可知,星载时钟的精确度越高,其定位精度也越高。早期试验型卫星采用由霍普金斯大学研制的石英振荡器,相对频率稳定度为10 − 11/秒。误差为14米。1974年以后,gps卫星采用铷原子钟,相对频率稳定度达到10 − 12/秒,误差8m。1977年,BOKCK II型采用了马斯频率和时间系统公司研制的铯原子钟后相对稳定频率达到10 − 13/秒,误差则降为29m。1981年,休斯公司研制的相对稳定频率为10 − 14/秒的氢原子钟使BLOCK IIR型卫星误差仅为1m。

GPS系统原理

当苏联发射了第一颗人造卫星后,美国约翰·霍布斯金大学应用物理实验室的研究人员提出既然可以已知观测站的位置知道卫星位置,那么如果已知卫星位置,应该也能测量出接收者的所在位置。这是导航卫星的基本设想。GPS导航系统的基本原理是测量出已知位置的卫星到用户接收机之间的距离,然后综合多颗卫星的数据就可知道接收机的具体位置。要达到这一目的,卫星的位置可以根据星载时钟所记录的时间在卫星星历中查出。而用户到卫星的距离则通过纪录卫星信号传播到用户所经历的时间,再将其乘以光速得到(由于大气层电离层的干扰,这一距离并不是用户与卫星之间的真实距离,而是伪距(PR):当GPS卫星正常工作时,会不断地用1和0二进制码元组成的伪随机码(简称伪码)发射导航电文。GPS系统使用的伪码一共有两种,分别是民用的C/A码和军用的P(Y)码。C/A码频率1023MHz,重复周期一毫秒,码间距1微秒,相当于300m;P码频率1023MHz,重复周期2664天,码间距01微秒,相当于30m。而Y码是在P码的基础上形成的,保密性能更佳。导航电文包括卫星星历、工作状况、时钟改正、电离层时延修正、大气折射修正等信息。它是从卫星信号中解调制出来,以50b/s调制在载频上发射的。导航电文每个主帧中包含5个子帧每帧长6s。前三帧各10个字码;每30秒重复一次,每小时更新一次。后两帧共 15000b。导航电文中的内容主要有遥测码、转换码、第1、2、3数据块,其中最重要的则为星历数据。当用户接受到导航电文时,提取出卫星时间并将其与自己的时钟做对比便可得知卫星与用户的距离,再利用导航电文中的卫星星历数据推算出卫星发射电文时所处位置,用户在WGS-84大地坐标系中的位置速度等信息便可得知。可见GPS导航系统卫星部分的作用就是不断地发射导航电文。然而,由于用户接受机使用的时钟与卫星星载时钟不可能总是同步,所以除了用户的三维坐标x、y、z外,还要引进一个Δt即卫星与接收机之间的时间差作为未知数,然后用4个方程将这4个未知数解出来。所以如果想知道接收机所处的位置,至少要能接收到4个卫星的信号。

差分技术

为了使民用的精确度提升,科学界发展另一种技术,称为差分全球定位系统(Differential GPS), 简称DGPS。亦即利用附近的已知参考坐标点(由其它测量方法所得), 来修正 GPS 的误差。再把这个即时(real time)误差值加入本身坐标运算的考虑, 便可获得更精确的值。

GPS有2D导航和3D导航分,在卫星信号不够时无法提供3D导航服务,而且海拔高度精度明显不够,有时达到10倍误差。但是在经纬度方面经改进误差很小。卫星定位仪在高楼林立的地区扑捉卫星信号要花较长时间。

GPS的功能

精确定时:广泛应用在天文台、通信系统基站、电视台中

工程施工:道路、桥梁、隧道的施工中大量采用GPS设备进行工程测量

勘探测绘:野外勘探及城区规划中都有用到

导航:

武器导航:精确制导导弹、巡航导弹

车辆导航:车辆调度、监控系统

船舶导航:远洋导航、港口/内河引水

飞机导航:航线导航、进场着陆控制

星际导航:卫星轨道定位

个人导航:个人旅游及野外探险

定位:

车辆防盗系统

手机,PDA,PPC等通信移动设备防盗,电子地图,定位系统

儿童及特殊人群的防走失系统

农业勘测

GPS的六大特点

第一,全天候,不受任何天气的影响;

第二,全球覆盖(高达98%);

第三,三维定点定速定时高精度;

第四,快速、省时、高效率;

第五,应用广泛、多功能;

第六,可移动定位。

目前正在运行的全球卫星定位系统有美国的GPS系统和俄罗斯的GLONASS系统。

欧盟1999年初正式推出“伽利略”计划,部署新一代定位卫星。该方案由27颗运行卫星和3颗预备卫星组成,可以覆盖全球,位置精度达几米,亦可与美国的GPS系统兼容,总投资为35亿欧元。该计划预计于2010年投入运行。

中国还独立研制了一个区域性的卫星定位系统——北斗导航系统。该系统的覆盖范围限于中国及周边地区,不能在全球范围提供服务,主要用于军事用途。

应用

军事 洲际弹道导弹

物流管理

地理信息系统

移动电话

数码相机

航空

卫星地图

航空

上文书讲到,两位宇航员都已经坐进了双子座 6 号飞船里边了。就等着发射了,哪知道发射任务被取消了,他们原本需要和阿金纳上面级进行对接。没想到宇宙神顶着阿金纳上面级升空以后,没了消息。后来传来遥感数据,阿金纳上面级已经爆炸了。那这次任务已经没有任何意义了。结果这两位宇航员闷了一身的白毛汗,乖乖地从飞船里边钻出来了。

那时候,美国的火箭发射频率非常高。大概两个月就要发射一枚载人飞船。所以,NASA 改变了计划,让双子座7号先升空,然后双子座 6 号晚发射,两艘飞船在太空完成对接联系,也就是尽量靠近,靠到脸对脸。但是当时还没有对接装置。是无法完成人员交换的,不过美国人有个大胆的想法,让 6 号的斯塔福德和 7 号的洛弗尔用太空行走技术,实现交叉换位。你去他船上,他去你船上。

宇航员没有一个同意的。美国人在太空行走刚刚搞了一次,这事儿难度太大了,最后只有作罢了。那好吧,就玩儿一次两艘飞船的接近 游戏 ,看看能靠到多近。

1965 年的 12 月 4 号,双子座 7 号发射了。洛弗尔和弗兰克主要的工作是测试人在太空里能不能坚持14天,也就是接近半个月的时间。因为时间很长,所以事先做了充分的准备。事先彻彻底底洗了个澡,连头发都洗得非常干净,一点头皮屑都没有。在太空这半个月肯定是没办法洗澡了。前一艘双子座飞船出现的问题是皮肤碎屑会到处飘,头皮屑也不是小事儿啊。他们在太空里,倒是可以用湿巾擦擦手擦擦脸。在座位后边还有个垃圾箱。毕竟时间长了,会产生不少的生活垃圾。

地面控制中心还要求他们收集一些排泄物,也就是尿液。结果他们差点弄撒了,还好没撒,他们对这个装置意见很大,万一不小心,太空船里边到处飘尿液液滴,这也太磕碜了。

这一次,安排他俩同一时间段休息,以前都是错开时间睡觉的。这一次可以舒服一点。也睡得足一点。美国东部时间早上 9 点钟,这两个宇航员被叫醒了,地面告诉他们出大事儿了。把两个宇航员吓了一跳,啥大事儿啊?地面告诉他们,有两架客机发生了相撞事故。一架是波音 707,一架是洛克希德的 星座 式。

这两位宇航员一听,这管我们屁事,我们的高度要比他们高 20 倍都不止。地面问他们,你们俩看到撞机事件没有,这俩宇航员这叫一个生气啊,他俩睡觉呢,啥也没看见。

这俩宇航员还伸着脖子往窗外看,地球太遥远,可以看见蔚蓝的大海,可以看到一朵朵的白云。可以看到佛罗里达半岛。噫?那是个啥?怎么海里出现白色的痕迹,紧接着冒出一道白烟啊?

宇航员们当时不知道,这是富兰克林号核潜艇在佛罗里达外海发射了一枚北极星潜射导弹。他们看见的是水下冒气泡的痕迹和导弹飞行的尾烟。所以啊,太空是有非常重要的军事价值的。啥都躲不过天上的眼睛嘛。

双子座7号在太空完成了 4 次变轨,稳定到了一个圆形轨道上,在这个轨道上,足可以维持 100 天不掉下去,就等着双子座 6 号飞船来汇合了。

双子座 6 号的成员组也在紧张准备。这一次任务代号变成了双子座 6A,毕竟这是多出来的一次发射任务。在双子座 7 号发射 8 天以后。斯塔福德和沃里坐进了座舱里,就等着发射了。要知道双子座飞船是采用纯氧环境,内部的气压比外部的低很多。人事先也要先吸氧,排除身体里的氮气。等适应了低压纯氧环境以后,再进入飞船。

双子座飞船本来就很窄,坐进去是很不舒服的。好不容易等到火箭点火,主发动机刚刚工作了 15 秒就突然刹车停止了。这可把两个宇航员给吓坏了,怎么关键时刻掉链子啊?宇航员的手都伸到了弹射拉环上,双子座飞船是靠弹射座椅救生的。但是从低压纯氧环境,突然弹出去,进入 1 个大气压的正常空气环境,人受得了受不了呢?他俩不知道。

如果是火箭已经起飞,发动机突然关机,再一屁股坐回发射台,那么就是一场涅杰林式的悲剧。整个火箭肯定要倒下来,肯定要炸掉。指令长沃里的脑子在一瞬间就要决定拉还是不拉。最后,他决定不拉,因为他没感觉到火箭在上升,应该是还在原地没动呢。果然,发动机开机时间太短了,火箭被发射架抱住,还没来得及动窝,暂时肯定是没有倒下去的风险,两个人算是赌对了。

事后这二位是一个劲的后怕,弹射座椅也是用固体火箭驱动的,弹射的时候肯定是屁股一溜烟,乖乖,舱里是纯氧环境,那简直是不敢想象。事后宇航员斯塔福德对媒体说,要是真的弹射,你们肯定会拍摄到两根大蜡烛从飞船里弹出来。NASA 在海军的中国湖试验场只做过非常潦草的测试,当时飞船座舱里充的是氮气,不是氧气。这二位算是捡回一条命。

卸除燃料花了 40 分钟时间。工程师们马上检查发动机,发现有个插头脱落了,导致了发动机熄火。后来再次排查,发现在马丁公司装配的时候。有个塑料帽掉进了管路,有可能会导致管路堵塞,好在被发现了。3 天以后,双子座 6A 再次发射,这一次宇航员非常顺利地进入了太空。

飞船绕着地球飞了 4 圈,逐渐靠近了双子座 7 号的轨道。6A 上的宇航员看见天边有一颗非常亮的星星,他还以为是天狼星呢。其实不是,这就是双子座 7 号。人家在轨道上已经转了 11 天了,你们怎么才来啊?

飞船的交会对接是非常复杂的事儿,因为在太空里,一切都是轨道,都是圆周运动。和飞机完全不是一个概念。比如说,你看见飞船就在前边,你要赶过去对接。你开小发动机一加速。你的轨道就升高了,轨道半径增加了,尽管你的线速度加大了,但是角速度反而变小了,你反而会远离目标。所以,反而需要稍稍减速,轨道下降一点。

斯塔福德和沃里有计算机辅助控制对接过程。两艘飞船彼此在靠近。就在此时,两艘船都进入到了地球背面,进入了黑暗之中。等到飞船转到阳面,双子座 6A 上的宇航员感觉一道阳光照进窗子,亮得有点刺眼。等眼睛适应阳光以后,望窗外一看,双子座7号就在几百米外的前面,看得清清楚楚。两艘飞船还在接近,逐渐接近到只有 36 米的距离。休斯顿的控制人员已经开始欢呼了,第一次有两艘飞船相距如此之近。

接下来的几个小时里,双方逐渐靠近,两边的宇航员一边唠嗑拉家常,一边操作。最后两艘飞船近到了只有 30 公分的距离。两艘飞船的状态非常稳定,太空里没有湍流,飞船是不会互相影响的。如果是飞机编队靠的这么近,气流会互相干扰。所以空中加油可不是个容易的事儿。

为了保险起见,双子座 6A 开小发动机使劲推了一下,和双子座 7 号分开了十几公里的样子。大家都要睡觉休息了,这是为了杜绝任何相撞的可能性。第二天,双子座 6A 开始返回大气层,最后落在了预定的海域,就在佛罗里达半岛附近。

双子座7号的两个人还有 3 天要过。你知道他们最后这 3 天是怎么熬过来的呀。他们在太空那么狭窄的环境里面足足憋了 11 天了。那真是百无聊赖,看太空都看腻了,没什么新鲜的。一直熬到最后一天,可算能够回家了。他们开反推火箭,进入返回的轨道。准确的落到了预定的海域,航母胡蜂号就在旁边等着呢。当他们被捞起来,放到胡蜂号航空母舰上的时候,两个人都疲倦的不行了,在航母上足足睡了一天。能在床上好好伸开了睡,真是太舒服了。

至此,美国人太空飞行的经验已经远远超过了苏联。苏联前期积累下的优势已经被消耗殆尽了。航天工业说到底拼的是国力。美国总统肯尼迪下定决心,不惜一切代价投入到了登月计划。而且副总统林登·约翰逊也是铁杆的支持者。在肯迪尼遇刺身亡以后,林登·约翰逊继任总统对航天计划一如既往地支持。但是苏联其实在航天方面并没有花那么多的钱。这几家设计局都处于竞争状态,或者说是内耗状态。互相攻击,已经是家常便饭了。

说实话,遇到这种情况,需要的就是领导一拍桌子,大喝一声“别吵啦”!然后直接下命令做决策。该用谁的方案,该如何分工。都要处理的清清楚楚。结果苏联是搞“诸葛亮会”,搞专家评议。专家们哪有那个胆子去拍板呢?只能是和稀泥,最后还是决定支持科罗廖夫和切洛梅分头行动,还是回到最早以前的方案,切洛梅搞绕月,科罗廖夫搞登月。唯一的改变就是科罗廖夫坚持,绕月飞船也要用他主导的联盟号飞船。这样可以保持绕月火箭的飞船系统和登月火箭保持一致,这样不就省了一份工作嘛,结果就把切洛梅气得够呛。

就在 1965 底,科罗廖夫病了。其实科罗廖夫的身体一直不算好,1960 年,科罗廖夫的心脏病第一次发作,于是他就去黑海边上修养。结果在疗养期间又发现了肾病。这都是当初在集中营留下的病根。医生都劝他,别这么不要命的工作啦,身体要紧。但是科罗廖夫的紧迫感是不允许他停下来的。

1962 年,科罗廖夫的身体毛病不断,肠道开始出血,被迫住院一段时间。到了 1964 年,他被诊断心律失常,住了 10 天的院,又被发现出现胆囊炎。后来又发生听力下降,估计是被火箭发动机巨大的声音吵的。到 1965 年底,他的被发现,大肠内有个息肉出血。1966 年 1 月 15 号他住进了医院,据说是苏联的卫生部长彼得罗夫斯基亲自主刀给他动手术。

其实科罗廖夫的病不是部长同志的专长。部长同志倒是好意,但是等到真的把科罗廖夫的腹腔打开,发现一个很大的肿瘤。作为主刀医生,彼得罗夫斯基处理的并不好,失血过多了。再加上科罗廖夫本人的心脏很弱,最后他就没能恢复过来。苏联航天事业最重要的主心骨科罗廖夫就这么离开了人世。当时他才 59 岁,年龄并不算老。

这一下,苏联的航天事业痛失擎天白玉柱,架海紫金梁。要知道在科罗廖夫的设计局,他是绝对的核心,完全是由他自己的技术眼光、领导能力以及和上下级的沟通能力在支撑。换个人是玩儿不转的。科罗廖夫的设计局由他的助手米申接手。米申是个不错的工程师,也是苏联科学院的院士。但是他显然没有科罗廖夫的魄力和领导能力。也不擅长和领导打交道。所以科罗廖夫的死,绝对是苏联航天界的一大损失。

科罗廖夫死了,但是苏联的航天计划仍然在继续。米申继续按照科罗廖夫生前的计划继续准备所有的任务,当时的时间还是很紧张的。美国人的双子座计划和阿波罗计划都已经有条不紊的展开了。可是苏联这里仍然在磕磕绊绊。要载人登月,一方面是需要巨型的火箭,登月舱已经选用了最新的联盟飞船来改进。但是联盟飞船到现在还没经过测试呢。

联盟飞船的外形像是一口钟,和我国的神州飞船的样子很像。不再是苏联传统的球星。东方号和上升号都是球形的。钟形的好处是底部对着下落返回的方向,可以最大限度地减速。而且可以通过改变飞船重心对飞行角度进行微调。这是球型返回舱所不具备的能力。联盟飞船更大,这是真正为三个宇航员设计的飞船,足够的宽敞,当然载人登月的话,只能坐两个,还是尽量减轻重量。

联盟飞船专用的登月改造型顶部有个对接口。可以和其他飞行器进行对接。但是,这儿没有开门,也就是说登月舱顶在联盟飞船的头顶上。但是人是没办法从里面钻进登月舱的。必须穿上太空服,进行太空行走,从联盟号飞船钻出来,然后爬到前面的登月舱,然后开门钻进去,这多麻烦啊。没办法,登月舱是杨格尔的设计局设计的,本来就不是一家人,兼容性不怎么样。

一直到 1966 年的 11 月 28 号联盟号飞船的无人测试版本才第一次飞行,火箭是 R-7 系列的最新改进型号联盟号火箭,这次代号科斯莫 133 号。实验飞船也就不用联盟号的名字,这是苏联的习惯。

飞船的发射还算是顺利,毕竟 R-7 系列也还是比较可靠的火箭。本来打算再发射一艘联盟飞船和科斯莫 133 实现太空无人操纵下的对接。但是另一枚火箭出故障了,一台助推器无法启动,自动控制系统马上关闭了主发动机和其他几个助推器。工程师马上就上去修理,看看到底是什么故障。结果过了 27 分钟以后,又发生了一件诡异的事情,惹出一场大祸。我们下次再说。

#航天##太空#

N1运载火箭是苏联研发的用来将苏联宇航员送到月球的火箭。也就是被西方人称为 G-1e 或 SL-15 的火箭。N1就是俄语носитель(运载器)的缩写。火箭研发工作比土星五号晚,不仅资金短缺、未测试,四次发射试验都失败了,于是苏联在1976年正式取消了这项工程。

前苏联的月球发射计划是用一个单独的发射工具,即"N-1"号运载火箭,并且要在月球轨道实现对接,这和美国用"土星"5号发射"阿波罗"号和登月舱飞船是采用的是相同的方式。"N-1"号曾在1969年2月21日发射,进行飞行试验,但最后在40000英尺高度爆炸而失败。1969年7月3日又进行了一次发射演习,但也失败。前苏联又分别于1971年6月和1972年11月试验了两次,两次都以失败告终。1971年6月的飞行中,发射后几秒钟,推进器失去控制,不断旋转摇摆。计算机关闭了发动机,"N-1"火箭又一次掉下来,完全毁坏了1969年已经严重毁坏的第二个发射台和塔台。可能是由于时间紧迫以及资金短缺,这一世界上最大的火箭共进行了四次发射,之前却没有进行过测试或试验。但是后来"N-1"火箭经过技术改进最终变成了如今的"能源号"火箭。"N-1"号的屡次失败粉碎了前苏联人的登月之梦,前苏联设计和建造登月飞船的工程师们肯定早已知道他们所冒的风险。回顾硬件制造过程、发射经过,以及花费,没人能怀疑航天员们的技术及超人的勇气。

首次发射:1969年2月21日

末次发射:1972年11月23日

1959年,N1的研发在谢尔盖·科罗廖夫(Sergey Korolyov)的带领下在他的科罗廖夫设计局(OKB-1)展开了。原方案是在火箭的上面级使用一台核发动机,使之能够发射50吨的载荷,用于军用太空站和载人火星飞船的发射。其中N1火箭尺寸最大;N2稍小,N3最小。当时并没有展开实际研发,N系列还只停留于计划阶段。

1959年12月,一场汇集了所有主设计师的会议上,设计师各自提出他们最新设计。科罗廖夫提出了N系列以及更保守的R-7。弗拉基米尔·切洛梅,科罗廖夫的对头,提出了他的"通用火箭"系列,使用一个通用的下面级搭配不同的模块来满足多种载荷需要。米哈伊尔·扬格利提出用R-26来代替R-16。最后,会议主持者决定将切洛梅的UR-100作为新的轻型洲际导弹,将扬格利的R-36作为重型洲际导弹方案,而他们认为没用使用科罗廖夫的超大型运载工具的必要,但给了他许多研发资金,以支持他将R-7改进为闪电号运载火箭(8K78)。

情况在1961年有了转机,3月在一次在拜科努尔举行的会议期间,诸位设计师一起探讨了N1方案和另一个正在设计中的R-20方案。6月,科罗廖夫得到了用于N1研发的小额经费。1961年5月,一份名为《重新考虑用于防御目的的航天运载器计划》中明确指出要在1965年试射N1火箭。

当美国在1961年5月宣布实施人类登月计划时,科罗廖夫提出了基于一种新型飞船(后来的联盟号)进行地球轨道集合的登月计划。 这个计划需要发射数次来完成登月组件运用,一个是联盟号飞船,一个是登月舱,还有用于地月间推进的发动机和燃料的辅助设备。这降低了运载火箭的性能需求,但是以必须快速完成组件发射为代价的。因为必须在组件的燃料耗尽前进行组装。 然而当时的苏联还是无力进行这样密集的发射。科罗廖夫于是研发50吨级版本的N1。

为了支持这个提议,凡棱丁·古鲁什科为科罗廖夫的方案提供了新型的RD-270发动机。 这种发动机已广泛用于古鲁什科的现有发动机设计和多种洲际导弹中。 然而,RD-270使用的四氧化二氮和偏二甲肼产生的比冲低于煤油液氧组合。科罗廖夫认为高性能发动机必须用高性能燃料,而且也对使用联氨的安全性提出质疑。

分歧最终导致科罗廖夫与古鲁什科的合作陷入僵局,1962年,设计委员会打破僵局并表示支持科罗廖夫的方案。 因为格卢什科的退出,科罗廖夫不得不另寻出路,他找到了尼古莱·库兹涅佐夫(Nikolai Kuznetsov)的OKB-276设计局。库兹涅佐夫的火箭设计经验有限,他将一种根据海拔不同型号各异的发动机NK-15提交给科罗廖夫。 为了达到要求的推力,有人提出在下面级周围使用数台NK-15,形成发动机群,这种环状结构中间留空,让空气通过。 使空气和废气混合以增加推力,同时氧化废气中故意增多含量的燃料。N1第一级的环形发动机群形成了一种原始的瓦形发动机。

同时,切洛梅提出一系列绕月飞行计划,他认为这样也可能击败美国。他还提出在推力器上使用由三台UR-200组成的发动机群,然而在格卢什科把RD-270交给切洛梅后,这个方案也被放弃。因为使用RD-270可以设计出更简单的发动机版本。这个方案就是UR-500。

当时的苏军尤其是战略导弹部队,并不支持这种对军事无益的政治工程。 而科罗廖夫与切洛梅却极力促成登月计划。1961年至1964年间,切洛梅的保守方案被普遍认同,于是UR-500和联盟号 7KL1的研发被提上了日程。

双子座计划让美国在太空领域领先于苏联,于是科罗廖夫向赫鲁晓夫施压,要求必须在美国之前进行载人登月。由于当时对地球轨道集合的研究甚少,以致最后不得不选用类似阿波罗计划的直接起飞方案。 而这需要推力更大的助推器。

科罗廖夫于是提出了研制大型N1的想法,同时设计出新的登月飞船L3。 L3飞船包含了地球推进发动机,改造后的联盟号 7K-L3和新的LK月球着陆器。而切洛梅提出了另一套方案,一艘已经开始研制的L1飞船和他自己设计的着陆器。 1964年8月,科罗廖夫的方案被选定,而切洛梅则继续他的环月飞船UR-500/L1的研发。

1964年赫鲁晓夫垮台后,两人重新开始了明争暗斗。1965年10月,苏联政府宣布:绕月飞行任务将使用切洛梅的UR-500搭配科罗廖夫的联盟号飞船,代替了切洛梅自己的探测器号飞船。第一次发射定于十月革命50周年之际的1967年。 而科罗廖夫坚持自己的N1-L3方案研究,虽然他赢得了这次学术争锋,但L1的研究也在继续。

1966年,科罗廖夫死于一次外科手术并发症,他的工作由他20年来的助手瓦西里·米辛(Vasily Mishin)接管。 米辛没有科罗廖夫的政治头脑,这个问题导致N1最后的失败,以致登月计划整体的失败。

但由于种种原因,n1火箭的四次发射都没有取得圆满成功,有3次是在发射到半空之后爆炸的,但有一次直接的发射平台上就爆了,也造成了人类火箭发射史上最大规模的爆炸。

欢迎分享,转载请注明来源:表白网

原文地址:https://h5.hunlipic.com/xing/2289178.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-12-06
下一篇2023-12-06

发表评论

登录后才能评论

评论列表(0条)

    保存